Application of the ICRP Database for Calculation of the Dose Coefficient for Aerosol Having Multimodal Particle Size Distribution

2020 ◽  
Vol 65 (1) ◽  
pp. 59-64
Author(s):  
A. Sukhoruchkin

Purpose: Development of a method for calculating radioactive aerosol dose coefficient when the aerosol particle size measurements resulted in a multimodal radionuclide activity distribution by particle diameters. Material and methods: The physical prerequisite for the proposed method is that the multimodal distribution may be caused by the presence of several sources of aerosols with different particle sizes. In the ICRP database to each value of the aerosol dose coefficient there corresponds one of ten functions of log-normal (unimodal) distribution with specified parameters. In the developed method the result of the aerosol particle size measurement is approximated by the sum of said standard functions with weight factors of each of the functions defined such that the best least squares approximation is obtained. Then the dose coefficient of the aerosol under study is calculated based on the dose value additivity property, i.e. each weight factor is multiplied by a respective value of the dose coefficient from the ICRP database, and the obtained products are added up. Results: There was carried out a series of numerical experiments, in each of which “experimental” points were simply plotted on a graph of a certain cumulative distribution function. Coordinates of the points are used as input for the programme implementing the developed algorithm. The calculated dose coefficient value is compared with the true value and/or the value obtained with the linear interpolation method using the AMAD. Conclusion: Physical prerequisites and results of numerical experiments confirm the validity of the developed method.

2009 ◽  
Vol 4 (3) ◽  
pp. 74-77
Author(s):  
Mikhail Vagin ◽  
Anton Unitsyn ◽  
Aleksandr Petrov ◽  
Aleksandr Kozlov ◽  
Sergey Malyshkin ◽  
...  

Possibility of mass definition using terahertz laser ablation method for biological nanoobjects is researched. Diffusion spectrometer of aerosols was applied for measuring the size of dispersed products of terahertz laser ablation. Dependence of molecular mass from the aerosol particle size was obtained for fragments of DNA λ-hind. This work was carried out using THz radiation of free electron laser of Siberian center of photochemical researches.


2018 ◽  
Vol 2 (4) ◽  
pp. 376-386 ◽  
Author(s):  
Sara Ibrahim ◽  
Manolis N. Romanias ◽  
Laurent Y. Alleman ◽  
Mohamad N. Zeineddine ◽  
Giasemi K. Angeli ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Nathan Hosannah ◽  
Jorge E. Gonzalez

Urban environments influence precipitation formation via response to dynamic effects, while aerosols are intrinsically necessary for rainfall formation; however, the partial contributions of each on urban coastal precipitation are not yet known. Here, the authors use aerosol particle size distributions derived from the NASA aerosol robotic network (AERONET) to estimate submicron cloud condensation nuclei (CCN) and supermicron CCN (GCCN) for ingestion in the regional atmospheric modeling system (RAMS). High resolution land data from the National Land Cover Database (NLCD) were assimilated into RAMS to provide modern land cover and land use (LCLU). The first two of eight total simulations were month long runs for July 2007, one with constant PSD values and the second with AERONET PSDs updated at times consistent with observations. The third and fourth runs mirrored the first two simulations for “No City” LCLU. Four more runs addressed a one-day precipitation event under City and No City LCLU, and two different PSD conditions. Results suggest that LCLU provides the dominant forcing for urban precipitation, affecting precipitation rates, rainfall amounts, and spatial precipitation patterns. PSD then acts to modify cloud physics. Also, precipitation forecasting was significantly improved under observed PSD and current LCLU conditions.


Sign in / Sign up

Export Citation Format

Share Document