scholarly journals Schrödinger's Cat: Where Does The Entanglement Come From?

Quanta ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 57 ◽  
Author(s):  
Radu Ionicioiu

Schrödinger's cat is one of the most striking paradoxes of quantum mechanics that reveals the counterintuitive aspects of the microscopic world. Here, I discuss the paradox in the framework of quantum information. Using a quantum networks formalism, I analyse the information flow between the atom and the cat. This reveals that the atom and the cat are connected only through a classical information channel: the detector clicks → the poison is released → the cat is killed. No amount of local operations and classical communication can entangle the atom and the cat, which are initially in a separable state. This casts a new light on the paradox.Quanta 2017; 6: 57–60.

2020 ◽  
Author(s):  
Vasil Dinev Penchev

The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit, can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question.1


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the quantum information itself is a generalization of classical information. Classical information refers to finite series or sets while quantum information, to infinite ones. Quantum information as well as classical information is a dimensionless quantity. Quantum information can be considered as a “bridge” between the mathematical and physical. The standard and common scientific epistemology grants the gap between the mathematical models and physical reality. The conception of truth as adequacy is what is able to transfer “over” that gap. One should explain how quantum information being a continuous transition between the physical and mathematical may refer to truth as adequacy and thus to the usual scientific epistemology and methodology. If it is the overall substance of anything claiming to be physical, one can question how different and dimensional physical quantities appear. Quantum information can be discussed as the counterpart of action. Quantum information is what is conserved, action is what is changed in virtue of the fundamental theorems of Emmy Noether (1918). The gap between mathematical models and physical reality, needing truth as adequacy to be overcome, is substituted by the openness of choice. That openness in turn can be interpreted as the openness of the present as a different concept of truth recollecting Heidegger’s one as “unconcealment” (ἀλήθεια). Quantum information as what is conserved can be thought as the conservation of that openness


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question. Number and being (by the meditation of time), the natural and artificial turn out to be not more than different hypostases of a single common essence. This implies some kind of neo-Pythagorean ontology making related mathematics, physics, and technics immediately, by an explicit mathematical structure.


2021 ◽  
Author(s):  
Vasil Penchev

The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the transfinite ordinal number corresponding to the infinity series in question. The transfinite ordinal numbers can be defined as ambiguously corresponding “transfinite natural numbers” generalizing the natural numbers of Peano arithmetic to “Hilbert arithmetic” allowing for the unification of the foundations of mathematics and quantum mechanics.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 114
Author(s):  
Michael Silberstein ◽  
William Mark Stuckey ◽  
Timothy McDevitt

Our account provides a local, realist and fully non-causal principle explanation for EPR correlations, contextuality, no-signalling, and the Tsirelson bound. Indeed, the account herein is fully consistent with the causal structure of Minkowski spacetime. We argue that retrocausal accounts of quantum mechanics are problematic precisely because they do not fully transcend the assumption that causal or constructive explanation must always be fundamental. Unlike retrocausal accounts, our principle explanation is a complete rejection of Reichenbach’s Principle. Furthermore, we will argue that the basis for our principle account of quantum mechanics is the physical principle sought by quantum information theorists for their reconstructions of quantum mechanics. Finally, we explain why our account is both fully realist and psi-epistemic.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the determinism of classical physics is more subjective and more anthropomorphic than the indeterminism of quantum mechanics for the former presupposes certain deterministic goal implicitly following the model of human freewill behavior. Quantum mechanics introduces the choice in the fundament of physical world involving a generalized case of choice, which can be called “subjectless”: There is certain choice, which originates from the transition of the future into the past. Thus that kind of choice is shared of all existing and does not need any subject: It can be considered as a low of nature. There are a few theorems in quantum mechanics directly relevant to the topic: two of them are called “free will theorems” by their authors (Conway and Kochen 2006; 2009). Any quantum system either a human or an electron or whatever else has always a choice: Its behavior is not predetermined by its past. This is a physical law. It implies that a form of information, the quantum information underlies all existing for the unit of the quantity of information is an elementary choice: either a bit or a quantum bit (qubit).


2012 ◽  
Vol 12 (3&4) ◽  
pp. 253-261
Author(s):  
Satyabrata Adhikari ◽  
Indranil Chakrabarty ◽  
Pankaj Agrawal

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.


2004 ◽  
Vol 4 (6&7) ◽  
pp. 460-466
Author(s):  
C.H. Bennett

We survey progress in understanding quantum information in terms of equivalences, reducibilities, and asymptotically achievable rates for transformations among nonlocal resources such as classical communication, entanglement, and particular quantum states or channels. In some areas, eg source coding, there are straightforward parallels to classical information theory; in others eg entanglement-assisted communication, new effects and tradeoffs appear that are beginning to be fairly well understood, or the remaining uncertainty has become focussed on a few simple open questions, such as conjectured additivity of the Holevo capacity. In still other areas, e.g. the role of the back communication and the classification of tripartite entanglement, much remains unknown, and it appears unlikely that an adequate description exists in terms of a finite number of resources.


Sign in / Sign up

Export Citation Format

Share Document