scholarly journals All the physical world as mathematical: Physical entity as quantum information

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the quantum information itself is a generalization of classical information. Classical information refers to finite series or sets while quantum information, to infinite ones. Quantum information as well as classical information is a dimensionless quantity. Quantum information can be considered as a “bridge” between the mathematical and physical. The standard and common scientific epistemology grants the gap between the mathematical models and physical reality. The conception of truth as adequacy is what is able to transfer “over” that gap. One should explain how quantum information being a continuous transition between the physical and mathematical may refer to truth as adequacy and thus to the usual scientific epistemology and methodology. If it is the overall substance of anything claiming to be physical, one can question how different and dimensional physical quantities appear. Quantum information can be discussed as the counterpart of action. Quantum information is what is conserved, action is what is changed in virtue of the fundamental theorems of Emmy Noether (1918). The gap between mathematical models and physical reality, needing truth as adequacy to be overcome, is substituted by the openness of choice. That openness in turn can be interpreted as the openness of the present as a different concept of truth recollecting Heidegger’s one as “unconcealment” (ἀλήθεια). Quantum information as what is conserved can be thought as the conservation of that openness

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum mechanics was reformulated as an information theory involving ageneralized kind of information, namely quantum information, in the end of the last century.Quantum mechanics is the most fundamental physical theory referring to all claiming to bephysical. Any physical entity turns out to be quantum information in the final analysis. Aquantum bit is the unit of quantum information, and it is a generalization of the unit of classicalinformation, a bit, as well as the quantum information itself is a generalization of classicalinformation. Classical information refers to finite series or sets while quantum information, toinfinite ones. Quantum information as well as classical information is a dimensionless quantity.Quantum information can be considered as a “bridge” between the mathematical and physical.The standard and common scientific epistemology grants the gap between the mathematicalmodels and physical reality. The conception of truth as adequacy is what is able to transfer“over” that gap. One should explain how quantum information being a continuous transitionbetween the physical and mathematical may refer to truth as adequacy and thus to the usualscientific epistemology and methodology. If it is the overall substance of anything claiming to bephysical, one can question how different and dimensional physical quantities appear. Quantuminformation can be discussed as the counterpart of action. Quantum information is what isconserved, action is what is changed in virtue of the fundamental theorems of Emmy Noether(1918). The gap between mathematical models and physical reality, needing truth as adequacyto be overcome, is substituted by the openness of choice. That openness in turn can beinterpreted as the openness of the present as a different concept of truth recollectingHeidegger’s one as “unconcealment” (ἀλήθεια). Quantum information as what is conserved canbe thought as the conservation of that openness.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and representable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice among infinitely many alternatives, and past as a well-ordering obtained as a result of a series of choices. The concept of quantum information describes the frontier of time, that “now”, which transforms future into past. Quantum information generalizes information from finite to infinite series or collections. The concept of quantum information allows of any physical entity to be interpreted as some nonzero quantity of quantum information. The fundament of quantum information is the concept of ‘quantum bit’, “qubit”. A qubit is a choice among an infinite set of alternatives. It generalizes the unit of classical information, a bit, which refer to a finite set of alternatives. The qubit is also isomorphic to a ball in Euclidean space, in which two points are chosen.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the determinism of classical physics is more subjective and more anthropomorphic than the indeterminism of quantum mechanics for the former presupposes certain deterministic goal implicitly following the model of human freewill behavior. Quantum mechanics introduces the choice in the fundament of physical world involving a generalized case of choice, which can be called “subjectless”: There is certain choice, which originates from the transition of the future into the past. Thus that kind of choice is shared of all existing and does not need any subject: It can be considered as a low of nature. There are a few theorems in quantum mechanics directly relevant to the topic: two of them are called “free will theorems” by their authors (Conway and Kochen 2006; 2009). Any quantum system either a human or an electron or whatever else has always a choice: Its behavior is not predetermined by its past. This is a physical law. It implies that a form of information, the quantum information underlies all existing for the unit of the quantity of information is an elementary choice: either a bit or a quantum bit (qubit).


2020 ◽  
Author(s):  
Vasil Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit, can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question.1


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both, and especially the latter, seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive stage of a single conclusion mentioned above. The concept of “transcendental invariance” meaning ontologically and physically interpreting the mathematical equivalence of the axiom of choice and the well-ordering “theorem” is utilized again. Then, time arrow is a corollary from that transcendental invariance, and in turn, it implies quantum information conservation as the Noether correlate of the linear “increase of time” after time arrow. Quantum information conservation implies a few fundamental corollaries such as the “conservation of energy conservation” in quantum mechanics from reasons quite different from those in classical mechanics and physics as well as the “absence of hidden variables” (versus Einstein’s conjecture) in it. However, the paper is concentrated only into the inference of another corollary from quantum information conservation, namely, dark matter and dark energy being due to entanglement, and thus and in the final analysis, to the conservation of quantum information, however observed experimentally only on the “cognitive screen” of “Mach’s principle” in Einstein’s general relativity therefore excluding any other source of gravitational field than mass and gravity. Then, if quantum information by itself would generate a certain nonzero gravitational field, it will be depicted on the same screen as certain masses and energies distributed in space-time, and most presumably, observable as those dark energy and dark matter predominating in the universe as about 96% of its energy and matter quite unexpectedly for physics and the scientific worldview nowadays. Besides on the cognitive screen of general relativity, entanglement is available necessarily on still one “cognitive screen” (namely, that of quantum mechanics), being furthermore “flat”. Most probably, that projection is confinement, a mysterious and ad hoc added interaction along with the fundamental tree ones of the Standard model being even inconsistent to them conceptually, as far as it need differ the local space from the global space being definable only as a relation between them (similar to entanglement). So, entanglement is able to link the gravity of general relativity to the confinement of the Standard model as its projections of the “cognitive screens” of those two fundamental physical theories.


Quanta ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 57 ◽  
Author(s):  
Radu Ionicioiu

Schrödinger's cat is one of the most striking paradoxes of quantum mechanics that reveals the counterintuitive aspects of the microscopic world. Here, I discuss the paradox in the framework of quantum information. Using a quantum networks formalism, I analyse the information flow between the atom and the cat. This reveals that the atom and the cat are connected only through a classical information channel: the detector clicks → the poison is released → the cat is killed. No amount of local operations and classical communication can entangle the atom and the cat, which are initially in a separable state. This casts a new light on the paradox.Quanta 2017; 6: 57–60.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question. Number and being (by the meditation of time), the natural and artificial turn out to be not more than different hypostases of a single common essence. This implies some kind of neo-Pythagorean ontology making related mathematics, physics, and technics immediately, by an explicit mathematical structure.


2020 ◽  
Author(s):  
Vasil Penchev

A historical review and philosophical look at the introduction of “negative probability” as well as “complex probability” is suggested. The generalization of “probability” is forced by mathematical models in physical or technical disciplines. Initially, they are involved only as an auxiliary tool to complement mathematical models to the completeness to corresponding operations. Rewards, they acquire ontological status, especially in quantum mechanics and its formulation as a natural information theory as “quantum information” after the experimental confirmation the phenomena of “entanglement”. Philosophical interpretations appear. A generalization of them is suggested: ontologically, they correspond to a relevant generalization to the relation of a part and its whole where the whole is a subset of the part rather than vice versa. The structure of “vector space” is involved necessarily in order to differ the part “by itself” from it in relation to the whole as a projection within it. That difference is reflected in the new dimension of vector space both mathematically and conceptually. Then, “negative or complex probability” are interpreted as a quantity corresponding the generalized case where the part can be “bigger” than the whole, and it is represented only partly in general within the whole.


Sign in / Sign up

Export Citation Format

Share Document