scholarly journals Ventricular septal defect causing tricuspid regurgitation with consequent pulmonary hypertension and right ventricular hypertrophy

2021 ◽  
Vol 9 (40) ◽  
pp. 77-78
Author(s):  
Mahmoud Abdelnabi ◽  
Abdallah Almaghraby
2003 ◽  
Vol 13 (4) ◽  
pp. 384-386 ◽  
Author(s):  
Munesh Tomar ◽  
Sitaraman Radhakrishnan ◽  
Savitri Shrivastava

We report two instances of transient isolated right-sided myocardial hypertrophy in patients with an intact ventricular septum, normal thickness of the posterior wall of the left ventricle, and normal ventricular function, diagnosed by echocardiography on the third day of life. The two neonates, born at 36 and 38 weeks gestation respectively, had perinatal distress. Both were diagnosed as having isolated right ventricular hypertrophy with mild pulmonary hypertension, which disappeared in both cases within 8 weeks without any specific therapy. Though the cause of the ventricular hypertrophy remains unclear, we believe that it is the consequence of remodeling of pulmonary vasculature secondary to acute perinatal distress, resulting in persistent pulmonary hypertension and producing pressure overload on the right ventricle, and hence right ventricular hypertrophy. The finding of early and transient right ventricular hypertrophy, with normal left-sided structures and normal ventricular function, has thus far failed to gain attention in the paediatric cardiologic literature.


2011 ◽  
Vol 30 (7) ◽  
pp. 827-833 ◽  
Author(s):  
Gaurav Choudhary ◽  
Frederick Troncales ◽  
Douglas Martin ◽  
Elizabeth O. Harrington ◽  
James R. Klinger

2003 ◽  
Vol 52 (4) ◽  
pp. 285-294 ◽  
Author(s):  
Yosuke KATO ◽  
Mitsunori IWASE ◽  
Hiroaki KANAZAWA ◽  
Natsuki KAWATA ◽  
Yukie YOSHIMORI ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52522 ◽  
Author(s):  
Noritada Yoshikawa ◽  
Noriaki Shimizu ◽  
Takako Maruyama ◽  
Motoaki Sano ◽  
Tomohiro Matsuhashi ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Juliane Hannemann ◽  
Antonia Glatzel ◽  
Jonas Hillig ◽  
Julia Zummack ◽  
Rainer H Boeger

Introduction: Chronic hypoxia causes persistent pulmonary vasoconstriction and leads to pulmonary hypertension and right ventricular hypertrophy. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis; its level increases in hypoxia concomitantly with reduced activity of dimethylarginine dimethylaminohydrolases (DDAH-1 and DDAH-2), the enzymes metabolizing ADMA. DDAH knockout models may therefore help to understand the pathophysiological roles of this enzyme and its substrate, ADMA, in the development of hypoxia-associated pulmonary hypertension. Hypothesis: We hypothesized that DDAH1 knock-out mice have an attenuated hypoxia-induced elevation of ADMA and reduced right ventricular hypertrophy. Methods: DDAH1 knock-out mice (KO) and their wild-type littermates (WT) were subjected to normoxia (NX) or hypoxia (HX) during 21 days. We measured ADMA concentration in plasma, DDAH1 and DDAH2 expression in the lung, right ventricular hypertrophy by the Fulton index, cardiomyocyte hypertrophy by dystrophin staining of heart tissues, and muscularization of pulmonary arterioles by CD31 and α-actin staining of lung sections. Results: DDAH1 KO mice had higher ADMA concentration than WT under NX (2.31±0.33 μmol/l vs. 1.20±0.17 μmol/l; p < 0.05). ADMA significantly increased in WT-HX (to 1.74±0.86 μmol/l; p < 0.05 vs. normoxia), whilst it did not further increase in KO-HX (2.58±0.58 μmol/l; p = n.s.). This was paralleled by a 38±13% reduction in DDAH1 mRNA but not DDAH2 mRNA expression, and reduced DDAH protein expression. We observed right ventricular hypertrophy under hypoxia in both, WT and KO mice, with no significant differences between both genotypes. Further, cardiomyocyte hypertrophy and pulmonary arteriolar muscularization were significantly increased by hypoxia, but not significantly different between WT and KO mice. Conclusions: We conclude that chronic hypoxia causes an elevation of ADMA, which impairs NO production and leads to endothelial dysfunction and vasoconstriction. Downregulation of DDAH expression and activity may be involved in this; however, knockout of DDAH1 does not modify the pathophysiological changes in remodeling of the pulmonary vasculature and the right ventricle.


Sign in / Sign up

Export Citation Format

Share Document