Transient severe isolated right ventricular hypertrophy in neonates

2003 ◽  
Vol 13 (4) ◽  
pp. 384-386 ◽  
Author(s):  
Munesh Tomar ◽  
Sitaraman Radhakrishnan ◽  
Savitri Shrivastava

We report two instances of transient isolated right-sided myocardial hypertrophy in patients with an intact ventricular septum, normal thickness of the posterior wall of the left ventricle, and normal ventricular function, diagnosed by echocardiography on the third day of life. The two neonates, born at 36 and 38 weeks gestation respectively, had perinatal distress. Both were diagnosed as having isolated right ventricular hypertrophy with mild pulmonary hypertension, which disappeared in both cases within 8 weeks without any specific therapy. Though the cause of the ventricular hypertrophy remains unclear, we believe that it is the consequence of remodeling of pulmonary vasculature secondary to acute perinatal distress, resulting in persistent pulmonary hypertension and producing pressure overload on the right ventricle, and hence right ventricular hypertrophy. The finding of early and transient right ventricular hypertrophy, with normal left-sided structures and normal ventricular function, has thus far failed to gain attention in the paediatric cardiologic literature.

2015 ◽  
Vol 308 (12) ◽  
pp. H1575-H1582 ◽  
Author(s):  
Rachel P. Heilman ◽  
Megan B. Lagoski ◽  
Keng Jin Lee ◽  
Joann M. Taylor ◽  
Gina A. Kim ◽  
...  

Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25–35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg−1·dose−1 sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH.


2003 ◽  
Vol 105 (6) ◽  
pp. 647-653 ◽  
Author(s):  
Jean-François JASMIN ◽  
Peter CERNACEK ◽  
Jocelyn DUPUIS

Although activation of the endothelin (ET) system contributes to pulmonary hypertension, modifications of the cardiopulmonary ET system and its responses to chronic ET receptor blockade are not well known. To investigate this, rats were injected with monocrotaline (60 mg/kg intraperitoneal) or saline, followed with treatment with the selective ETA receptor antagonist LU135252 (LU; 50 mg·kg-1·day-1) or with saline. After 3 weeks, haemodynamics, cardiac hypertrophy, ET-1 levels and cardiopulmonary ET-receptor-binding profile were evaluated. Monocrotaline (n=7) elicited marked pulmonary hypertension and right ventricular hypertrophy compared with controls (n=8). Both variables were substantially attenuated by LU therapy (n=8; P<0.05 for both). After monocrotaline, right ventricular ET-1 levels were more significantly increased than in the left ventricle (+198% compared with +127%; P<0.05). ETB receptor density was augmented (3-fold) in the right ventricle, whereas that of ETA receptors was not affected. LU treatment also significantly attenuated these alterations (P<0.05). In the lungs, ET-1 levels were not increased after monocrotaline, whereas the balance of ETB to ETA receptors was altered, with a trend toward a lower percentage of ETB than in the control rats. LU treatment did not affect these variables in the lungs. Therefore monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy are associated with the up-regulation of ET-1 and ETB receptors in the right ventricle. These alterations are attenuated with the reduction of pulmonary hypertension and right ventricular hypertrophy after chronic blockade of the ETA receptors, supporting the role of the ET system in right ventricular hypertrophy.


2021 ◽  
pp. 1-15
Author(s):  
Lars K. Markvardsen ◽  
Lene D. Sønderskov ◽  
Christine Wandall-Frostholm ◽  
Estéfano Pinilla ◽  
Judit Prat-Duran ◽  
...  

<b><i>Introduction:</i></b> Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. <b><i>Methods:</i></b> Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. <b><i>Results:</i></b> Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. <b><i>Discussion/Conclusions:</i></b> Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


2016 ◽  
Vol 27 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Sofie Axelgaard ◽  
Sarah Holmboe ◽  
Steffen Ringgaard ◽  
Thomas K. Hillgaard ◽  
Stine Andersen ◽  
...  

AbstractBackgroundRight heart function is an important predictor of morbidity and mortality in pulmonary arterial hypertension and many CHD. We investigated whether treatment with the prostacyclin analogue treprostinil could prevent pressure overload-induced right ventricular hypertrophy and failure.MethodsMale Wistar rats were randomised to severe pulmonary trunk banding with a 0.5-mm banding clip (n=41), moderate pulmonary trunk banding with a 0.6-mm banding clip (n=36), or sham procedure (n=10). The banded rats were randomised to 6 weeks of treatment with a moderate dose of treprostinil (300 ng/kg/minute), a high dose of treprostinil (900 ng/kg/minute), or vehicle.ResultsPulmonary trunk banding effectively induced hypertrophy, dilatation, and decreased right ventricular function. The severely banded animals presented with decompensated heart failure with extracardial manifestations. Treatment with treprostinil neither reduced right ventricular hypertrophy nor improved right ventricular function.ConclusionsIn the pulmonary trunk banding model of pressure overload-induced right ventricular hypertrophy and failure, moderate- and high-dose treatment with treprostinil did not improve right ventricular function neither in compensated nor in decompensated right heart failure.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Maria Laggner ◽  
Philipp Hacker ◽  
Felicitas Oberndorfer ◽  
Jonas Bauer ◽  
Thomas Raunegger ◽  
...  

Pulmonary hypertension (PH) is characterized by increased pulmonary arterial pressure caused by the accumulation of mesenchymal-like cells in the pulmonary vasculature. PH can lead to right ventricular hypertrophy (RVH) and, ultimately, heart failure and death. In PH etiology, endothelial-to-mesenchymal transition (EndMT) has emerged as a critical process governing the conversion of endothelial cells into mesenchymal cells, and S100A4, EGF, and EGFR are implicated in EndMT. However, a potential role of S100A4, EGF, and EGFR in PH has to date not been elucidated. We therefore quantified S100A4, EGF, and EGFR in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH). To determine specificity for unilateral heart disease, the EndMT biomarker signature was further compared between PH patients presenting with RVH and patients suffering from aortic valve stenosis (AVS) with left ventricular hypertrophy. Reduced S100A4 concentrations were found in CTEPH and iPAH patients with RVH. Systemic EGF was increased in CTEPH but not in iPAH, while AVS patients displayed slightly diminished EGF levels. EGFR was downregulated in all patient groups when compared to healthy controls. Longitudinal data analysis revealed no effect of surgical therapies on EndMT markers. Pulmonary thrombo-endarterectomized samples were devoid of S100A4, while S100A4 tissue expression positively correlated with higher grades of Heath–Edwards histopathological lesions of iPAH-derived lung tissue. Histologically, EGFR was not detectable in CTEPH lungs or in iPAH lesions. Together, our data suggest an intricate role for S100A4 and EGF/EGFR in PH with right heart pathology.


1991 ◽  
Vol 70 (2) ◽  
pp. 561-566 ◽  
Author(s):  
Y. L. Lai ◽  
J. W. Olson ◽  
M. N. Gillespie

Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.


1983 ◽  
Vol 54 (2) ◽  
pp. 371-374 ◽  
Author(s):  
T. Sugita ◽  
T. M. Hyers ◽  
I. M. Dauber ◽  
W. W. Wagner ◽  
I. F. McMurtry ◽  
...  

Monocrotaline induces microvascular leak and pulmonary hypertension in rats. We have hypothesized that the leak is related in some way to the pulmonary hypertension and precedes it. In rats given 40 mg monocrotaline/kg body wt subcutaneously, lung wet weight-to-dry weight ratios and lung albumin content began to increase within the first 3 days and became maximal at 1 wk. Alveolar lavage fluid showed little or no increase in protein. Right ventricular hypertrophy increased progressively from 2 through 3 wk. An increase in lung dry weight paralleled the right ventricular hypertrophy. The amount of blood retained in the lung did not account for the increased lung water, albumin, or weight. We considered that microvascular leak without leak into the alveolar space preceded pulmonary hypertension, right ventricular hypertrophy, and increased lung dry weight. In rats not given monocrotaline but exposed for 3 wk to hypobaric hypoxia, lung albumin, lung dry weight, and right ventricular weight increased. Increased lung dry weight probably reflects hyperplasia of lung cells. If so, an association of microvascular leak, lung cell hyperplasia, and right ventricular hypertrophy may occur in both monocrotaline- and hypoxia-induced pulmonary hypertension.


1987 ◽  
Vol 62 (2) ◽  
pp. 816-820 ◽  
Author(s):  
J. W. Fasules ◽  
K. R. Stenmark ◽  
P. M. Henson ◽  
N. F. Voelkel ◽  
J. T. Reeves

The administration of monocrotaline to rats causes pulmonary vascular leak within 1 wk followed in 2–3 wk by perivascular proliferation and fatal pulmonary hypertension. Possibly blocking the proliferation might block the pulmonary hypertension, providing insight into its mechanism. Because heparin, given as an antiproliferative agent, reduced hypoxic pulmonary hypertension in mice, it might also block monocrotaline-induced pulmonary hypertension. Alternatively, anticoagulation could worsen the lung injury. We found that heparin (300 and 600 U/kg sc twice daily) inhibited clotting in rats given monocrotaline but did not change the vascular leak, the right ventricular pressure, the right ventricular hypertrophy, the increased medial thickness of the pulmonary arterioles, or the production of a slow-reacting substance of anaphylaxis-like material by the lungs. A nonanticoagulant heparin fragment (2 mg/kg sc twice daily), given to avoid anticoagulation also did not influence the monocrotaline injury. Thus neither anticoagulant nor nonanticoagulant heparin either attenuated or worsened the measured effects of monocrotaline.


1963 ◽  
Vol 18 (5) ◽  
pp. 913-918 ◽  
Author(s):  
Herbert N. Hultgren ◽  
Emilio Marticorena ◽  
Harry Miller

The weight of the ventricles and septum in formalin-fixed hearts were determined in six animal species living continuously at altitudes between 10,000 and 15,400 ft in the central Peruvian Andes. Control studies were made of a similar number of hearts obtained from sea-level animals. Guinea pigs, rabbits, dogs, lambs, pigs, and steers all exhibited a moderate hypertrophy of the right ventricle roughly equivalent to a 25% increase in weight. A lesser degree of septal hypertrophy occurred in all animals except steers. The data suggest that a moderate degree of pulmonary hypertension is the probable cause of the right ventricular hypertrophy. In steers this would be roughly the equivalent of a mean pressure of 35 mm Hg at 11,800 ft compared with sea-level pressures of 24 mm Hg. ventricular hypertrophy; altitude; pulmonary hypertension; lambs; pigs; steers Submitted on December 3, 1962


Sign in / Sign up

Export Citation Format

Share Document