Confirmation of Male Specific Fetal Free RNA in Maternal Plasma and Comparison of Accuracy on the Sex Determination using Real-time PCR Method in Korean Native Cattle

2013 ◽  
Vol 28 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Sang-Ho Lee ◽  
◽  
Chul-Ho Park ◽  
Jun-Tae Park ◽  
Sang-Guk Park ◽  
...  
Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 564
Author(s):  
Jana Bohmova ◽  
Marek Lubusky ◽  
Iva Holuskova ◽  
Martina Studnickova ◽  
Romana Kratochvilova ◽  
...  

Noninvasive fetal RHD genotyping is an important tool for predicting RhD incompatibility between a pregnant woman and a fetus. This study aimed to assess a methodological approach other than the commonly used one for noninvasive fetal RHD genotyping on a representative set of RhD-negative pregnant women. The methodology must be accurate, reliable, and broadly available for implementation into routine clinical practice. A total of 337 RhD-negative pregnant women from the Czech Republic region were tested in this study. The fetal RHD genotype was assessed using two methods: real-time PCR and endpoint quantitative fluorescent (QF) PCR. We used exon-7-specific primers from the RHD gene, along with internal controls. Plasma samples were analyzed and measured in four/two parallel reactions to determine the accuracy of the RHD genotyping. The RHD genotype was verified using DNA analysis from a newborn buccal swab. Both methods showed an excellent ability to predict the RHD genotype. Real-time PCR achieved its greatest accuracy of 98.6% (97.1% sensitivity and 100% specificity (95% CI)) if all four PCRs were positive/negative. The QF PCR method also achieved its greatest accuracy of 99.4% (100% sensitivity and 98.6% specificity (95% CI)) if all the measurements were positive/negative. Both real-time PCR and QF PCR were reliable methods for precisely assessing the fetal RHD allele from the plasma of RhD-negative pregnant women.


2003 ◽  
Vol 23 (3) ◽  
pp. 235-238 ◽  
Author(s):  
Ilona Hromadnikova ◽  
Bela Houbova ◽  
Dana Hridelova ◽  
Sona Voslarova ◽  
Josef Kofer ◽  
...  

2010 ◽  
Vol 11 (2) ◽  
pp. 415-417 ◽  
Author(s):  
JESSICA L. BRUBAKER ◽  
NATALIE K. KAROUNA-RENIER ◽  
YU CHEN ◽  
KATHRYN JENKO ◽  
DANIEL T. SPRAGUE ◽  
...  

2020 ◽  
Vol 18 ◽  
Author(s):  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Conventional laboratory culture-based methods for diagnosis of Streptococcus pneumoniae are time-consuming and yield false negative results. Molecular methods including real-time (RT)-PCR rapid methods and conventional PCR due to higher sensitivity and accuracy have been replaced instead traditional culture assay. The aim of the current study was to evaluate lytA gene for detection of Streptococcus pneumoniae in the cerebrospinal fluid of human patients with meningitis using real-time PCR assay. Material and Methods: In this cross-sectional study, a total of 30 clinical specimens were collected from patients in a period from September to December 2018. In order to evaluate the presence of lytA gene, conventional and real-time PCR methods were used without culture. Results: From 30 sputum samples five (16.66%) isolates were identified as S. pneumoniae by lytA PCR and sequencing. Discussion: In this research, an accurate and rapid real-time PCR method was used, which is based on lytA gene for diagnosis of bacteria so that it can be diagnosed. Based on the sequencing results, the sensitivity for detection of lytA gene was 100% (5/5).


2003 ◽  
Vol 69 (12) ◽  
pp. 7430-7434 ◽  
Author(s):  
Trevor G. Phister ◽  
David A. Mills

ABSTRACT Traditional methods to detect the spoilage yeast Dekkera bruxellensis from wine involve lengthy enrichments. To overcome this difficulty, we developed a quantitative real-time PCR method to directly detect and enumerate D. bruxellensis in wine. Specific PCR primers to D. bruxellensis were designed to the 26S rRNA gene, and nontarget yeast and bacteria common to the winery environment were not amplified. The assay was linear over a range of cell concentrations (6 log units) and could detect as little as 1 cell per ml in wine. The addition of large amounts of nontarget yeasts did not impact the efficiency of the assay. This method will be helpful to identify possible routes of D. bruxellensis infection in winery environments. Moreover, the time involved in performing the assay (3 h) should enable winemakers to more quickly make wine processing decisions in order to reduce the threat of spoilage by D. bruxellensis.


2013 ◽  
Vol 46 (15) ◽  
pp. 1566-1571 ◽  
Author(s):  
Weidong Zheng ◽  
Yuwei Di ◽  
Yinghong Liu ◽  
Ge Huang ◽  
Youwei Zheng ◽  
...  

2013 ◽  
Vol 12 (3) ◽  
pp. 107-113 ◽  
Author(s):  
Jie Huang ◽  
Chun Gao ◽  
Xilai Ding ◽  
Shoufang Qu ◽  
Licheng Liu ◽  
...  

2015 ◽  
Vol 159 ◽  
pp. 5-12 ◽  
Author(s):  
P. Gyawali ◽  
J.P.S. Sidhu ◽  
W. Ahmed ◽  
P. Jagals ◽  
S. Toze

2009 ◽  
Vol 11 ◽  
pp. S106-S108 ◽  
Author(s):  
Tomoharu Tokutomi ◽  
Yuzo Takada ◽  
Takako Murayama ◽  
Masahiro Mukaida ◽  
Jun Kanetake

Sign in / Sign up

Export Citation Format

Share Document