scholarly journals A Broad Beam-Width Dual-Polarization Microstrip Dipole Antenna for 5G MIMO Application

Author(s):  
You-wei LIU ◽  
Xiong-jie JIN ◽  
Xiao YU ◽  
Hou-jun SUN
Author(s):  
Chuo Yang ◽  
Long-wei He ◽  
Guo-dong Liu ◽  
Yu-dong Zhao ◽  
Feng-hong Zhao ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Lixia Yang ◽  
Hafiz Usman Tahseen ◽  
Syed Shah Irfan Hussain ◽  
Wang Hongjin

Abstract A triple-band ±45° dual-polarized dipole antenna is presented in this paper. The proposed antenna covers two bands from n77 and one from n79 5G NR frequency spectrums. The profile antenna exhibits the measured impedance bandwidths 3.6-3.85 GHz, 4.05-4.2 GHz and 4.8- 5.15 GHz with S11, S22 < - 15dB return loss. Antenna is fabricated with four substrates; one radiator, one reflector and two feeding baluns. Antenna is designed and optimized with HFSS simulator and fabricated for experimental verification. Antenna gives a stable radiation pattern with 8.55dBi high gain and 70° half power beam width (HPBW) that makes it a good candidate for wireless 5G sub-6 GHz and multiband base station applications. Finally, antenna is tested in a realistic application environment to show the utility of the proposed antenna for wireless sub-6 GHz IoT applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xujun Yang ◽  
Lei Ge ◽  
Dengguo Zhang ◽  
Chow-Yen-Desmond Sim

A dual-polarized aperture-coupled magnetoelectric (ME) dipole antenna is presented in this paper. The feeding network is based on substrate-integrated coaxial lines (SICLs). To describe the effect of the SICL on improving the isolation, the ME dipole with another two different feeding configurations, microstrip lines and striplines, respectively, is compared. As such, the coupling between the transmission lines is tremendously reduced and the isolation between the two input ports of different polarization is enhanced. An antenna prototype is fabricated and tested, exhibiting good performances, including an isolation level of higher than 30 dB between the two input ports and gains of more than 9.5 dBi. Besides, the proposed design is capable of achieving stable directional radiation patterns with cross-polarization levels lower than −22 dB and back radiation levels lower than −24 dB.


2019 ◽  
Vol 30 ◽  
pp. 05015
Author(s):  
Vladislav Komov ◽  
Victor Sledkov ◽  
Li ZiMeng

Two improved designs of wideband dual polarization antennas for base station. The first design is the crossed dipoles for the frequency bands 1695–2695 MHz. The presented shape of crossed dipole provides a low level of crosspolarization, VSWR better than 1.4, the isolation between polarizations is better than –33 dB and the beam width in the horizontal plane is 65±4 degrees. The second design is the square dipole in the frequency range 690–960 MHz provides the beam width in the horizontal plane 60±5 degrees, E-plane 58±3 degrees, H-plane 64±3 degrees, the isolation between polarizations better than –35dB.


Sign in / Sign up

Export Citation Format

Share Document