Design and Fabrication of A Wide-Band Dual-Polarization Stacked Patch Array Antenna for Satellite SAR Applications

Author(s):  
Jae-Min Lee ◽  
◽  
Je-Woo Yu ◽  
Heeduck Chae ◽  
YuRi Lee ◽  
...  
Author(s):  
Qiang Sun ◽  
Yong-Ling Ban ◽  
Ji-Wei Lian ◽  
Yong Yang ◽  
Gang Wu ◽  
...  

Author(s):  
Jae-Duk Kim ◽  
Sang-Wang Cho ◽  
Sam Yeul Choi ◽  
Doo Hwan Kim ◽  
Heui Jun Park ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 869 ◽  
Author(s):  
Ayesha Kosar Fahad ◽  
Cunjun Ruan ◽  
Kanglong Chen

Transmissive metasurface-based dual-wide-band dual circular polarized operation is needed to facilitate volume and size reduction along with polarization diversity for future THz wireless communication. In this paper, a novel dual-wide-band THz linear polarization to circular polarization (LP-to-CP) converter is proposed using transmissive metasurfaces. It converts incident X polarized waves into transmitted left-hand circular polarized (LHCP) and right-hand circular polarized (RHCP) waves at two frequency bands. The structure consists of bi-layered metasurfaces having an outer conductor square ring and three inner conductor squares diagonally intersecting each other. The proposed converter works equally well with incident Y polarizations. Operational bandwidths for the dual-band LP-to-CP are 1.16 THz to 1.634 THz (34% fractional bandwidth) and 3.935 THz to 5.29 THz (29% fractional bandwidth). The electromagnetic simulation was carried out in two industry-standard software packages, High Frequency Structure Simulator (HFSS) and Computer Simulation Technology (CST), using frequency and time domain solvers respectively. Close agreement between results depicts the validity and reliability of the proposed design. The idea is supported by equivalent circuits and physical mechanisms involved in the dual-wide-band dual polarization operation. The impact of different geometrical parameters of the unit cell on the performance of LP-to-CP operation is also investigated.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 488
Author(s):  
Alfredo Catalani ◽  
Giovanni Toso ◽  
Piero Angeletti ◽  
Mario Albertini ◽  
Pasquale Russo

In the paper the development of a fully electronic transmit-receive phased-array antenna system in Ku-band for aircraft communications via satellite is presented. Particular emphasis has been placed in the improvement of the following key elements: a dual-polarization self-diplexing radiating element, a transmit/receive active module with full polarization agility based on a digital vector modulator and a SiGe multinode MMIC. The optimized antenna elements enable a significant improvement towards the realization of a future affordable commercial product for satellite communications.


Sign in / Sign up

Export Citation Format

Share Document