scholarly journals A Prescriptive Machine-Learning Framework to the Price-Setting Newsvendor Problem

2021 ◽  
pp. ijoo.2019.0046
Author(s):  
Pavithra Harsha ◽  
Ramesh Natarajan ◽  
Dharmashankar Subramanian

The approach to data-driven optimization described in this paper was developed when the authors were part of an IBM project team working with the U.S. Department of Energy, Pacific National Laboratory, and various energy utility partners on an initiative to develop a smart energy distribution infrastructure. Within this broader scope and based on the data collected in some initial controlled experiments, the paper specifically addresses the design and optimization of real-time price incentives to consumers to manage their electricity demand and determine the energy capacity to be provisioned by the utility. This latter problem fits into the well-known price-setting newsvendor problem framework, and our goal was to replace the simplistic methods in the literature by more realistic data-driven methods to take into account the data-collection capabilities and the modeling complexity of real-world applications. Our aspirations for the paper are (1) to introduce data-driven, distribution-free approaches to decision-making problems and (2) to motivate scalable conditional value-at-risk regression-based approaches for these problems.

2019 ◽  
Vol 11 (23) ◽  
pp. 6784
Author(s):  
Suyang Zhou ◽  
Di He ◽  
Zhiyang Zhang ◽  
Zhi Wu ◽  
Wei Gu ◽  
...  

Intra-day control and scheduling of energy systems require high-speed computation and strong robustness. Conventional mathematical driven approaches usually require high computation resources and have difficulty handling system uncertainties. This paper proposes two data-driven scheduling approaches for hydrogen penetrated energy system (HPES) operational scheduling. The two data-driven approaches learn the historical optimization results calculated out using the mixed integer linear programing (MILP) and conditional value at risk (CVaR), respectively. The intra-day rolling optimization mechanism is introduced to evaluate the proposed data-driven scheduling approaches, MILP data-driven approach and CVaR data-driven approach, along with the forecasted renewable generation and load demands. Results show that the two data-driven approaches have lower intra-day operational costs compared with the MILP based method by 1.17% and 0.93%. In addition, the combined cooling and heating plant (CCHP) has a lower frequency of changing the operational states and power output when using the MILP data-driven approach compared with the mathematical driven approaches.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 429 ◽  
Author(s):  
Xiaoqing Liu ◽  
Felix T. S. Chan ◽  
Xinsheng Xu

This paper studies the optimal order decisions for the loss-averse newsvendor problem with backordering and contributes to the risk hedging issue in the newsvendor model. The Conditional Value-at-Risk (CVaR) measure is applied to quantify the potential risks for the loss-averse newsvendor in a backordering setting, and we obtain the optimal order quantity for a loss-averse newsvendor to maximize the CVaR of utility. It is found that the optimal order quantity to maximize the CVaR objective could be bigger or smaller than the expected profit maximization (EPM) order quantity, which provides an alternative explanation on decision bias in the newsvendor model. This study also reveals that the optimal order quantity for a loss-averse newsvendor to maximize expected utility with backordering is smaller than the EPM order quantity, which implies that backordering encourages the loss-averse newsvendor to order fewer items. Sensitivity analyses are performed to investigate the properties of the optimal order quantities and managerial insights are suggested. This paper provides a novel method for the risk management of the loss-averse newsvendor model and presents several new ordering policies for the retailers in practice.


2019 ◽  
Vol 478 ◽  
pp. 595-605 ◽  
Author(s):  
Ujjwal Murarka ◽  
Vishakha Sinha ◽  
Lakshman S. Thakur ◽  
Manoj Kumar Tiwari

2014 ◽  
Vol 16 (6) ◽  
pp. 3-29 ◽  
Author(s):  
Samuel Drapeau ◽  
Michael Kupper ◽  
Antonis Papapantoleon

Author(s):  
Sheri Markose ◽  
Simone Giansante ◽  
Nicolas A. Eterovic ◽  
Mateusz Gatkowski

AbstractWe analyse systemic risk in the core global banking system using a new network-based spectral eigen-pair method, which treats network failure as a dynamical system stability problem. This is compared with market price-based Systemic Risk Indexes, viz. Marginal Expected Shortfall, Delta Conditional Value-at-Risk, and Conditional Capital Shortfall Measure of Systemic Risk in a cross-border setting. Unlike paradoxical market price based risk measures, which underestimate risk during periods of asset price booms, the eigen-pair method based on bilateral balance sheet data gives early-warning of instability in terms of the tipping point that is analogous to the R number in epidemic models. For this regulatory capital thresholds are used. Furthermore, network centrality measures identify systemically important and vulnerable banking systems. Market price-based SRIs are contemporaneous with the crisis and they are found to covary with risk measures like VaR and betas.


2021 ◽  
pp. 1-29
Author(s):  
Yanhong Chen

ABSTRACT In this paper, we study the optimal reinsurance contracts that minimize the convex combination of the Conditional Value-at-Risk (CVaR) of the insurer’s loss and the reinsurer’s loss over the class of ceded loss functions such that the retained loss function is increasing and the ceded loss function satisfies Vajda condition. Among a general class of reinsurance premium principles that satisfy the properties of risk loading and convex order preserving, the optimal solutions are obtained. Our results show that the optimal ceded loss functions are in the form of five interconnected segments for general reinsurance premium principles, and they can be further simplified to four interconnected segments if more properties are added to reinsurance premium principles. Finally, we derive optimal parameters for the expected value premium principle and give a numerical study to analyze the impact of the weighting factor on the optimal reinsurance.


2021 ◽  
Vol 35 (2) ◽  
pp. 621-659
Author(s):  
Lewis Hammond ◽  
Vaishak Belle

AbstractMoral responsibility is a major concern in autonomous systems, with applications ranging from self-driving cars to kidney exchanges. Although there have been recent attempts to formalise responsibility and blame, among similar notions, the problem of learning within these formalisms has been unaddressed. From the viewpoint of such systems, the urgent questions are: (a) How can models of moral scenarios and blameworthiness be extracted and learnt automatically from data? (b) How can judgements be computed effectively and efficiently, given the split-second decision points faced by some systems? By building on constrained tractable probabilistic learning, we propose and implement a hybrid (between data-driven and rule-based methods) learning framework for inducing models of such scenarios automatically from data and reasoning tractably from them. We report on experiments that compare our system with human judgement in three illustrative domains: lung cancer staging, teamwork management, and trolley problems.


Sign in / Sign up

Export Citation Format

Share Document