scholarly journals An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling

2010 ◽  
Vol 118 (9) ◽  
pp. 1189-1195 ◽  
Author(s):  
Susan C. Anenberg ◽  
Larry W. Horowitz ◽  
Daniel Q. Tong ◽  
J. Jason West
2020 ◽  
Vol 5 (3) ◽  
pp. e002063 ◽  
Author(s):  
Benjamin Bowe ◽  
Elena Artimovich ◽  
Yan Xie ◽  
Yan Yan ◽  
Miao Cai ◽  
...  

IntroductionWe aimed to integrate all available epidemiological evidence to characterise an exposure–response model of ambient fine particulate matter (PM2.5) and the risk of chronic kidney disease (CKD) across the spectrum of PM2.5 concentrations experienced by humans. We then estimated the global and national burden of CKD attributable to PM2.5.MethodsWe collected data from prior studies on the association of PM2.5 with CKD and used an integrative meta-regression approach to build non-linear exposure–response models of the risk of CKD associated with PM2.5 exposure. We then estimated the 2017 global and national incidence, prevalence, disability-adjusted life-years (DALYs) and deaths due to CKD attributable to PM2.5 in 194 countries and territories. Burden estimates were generated by linkage of risk estimates to Global Burden of Disease study datasets.ResultsThe exposure–response function exhibited evidence of an increase in risk with increasing PM2.5 concentrations, where the rate of risk increase gradually attenuated at higher PM2.5 concentrations. Globally, in 2017, there were 3 284 358.2 (95% UI 2 800 710.5 to 3 747 046.1) incident and 122 409 460.2 (108 142 312.2 to 136 424 137.9) prevalent cases of CKD attributable to PM2.5, and 6 593 134.6 (5 705 180.4 to 7 479 818.4) DALYs and 211 019.2 (184 292.5 to 236 520.4) deaths due to CKD attributable to PM2.5. The burden was disproportionately borne by low income and lower middle income countries and exhibited substantial geographic variability, even among countries with similar levels of sociodemographic development. Globally, 72.8% of prevalent cases of CKD attributable to PM2.5 and 74.2% of DALYs due to CKD attributable to PM2.5 were due to concentrations above 10 µg/m3, the WHO air quality guidelines.ConclusionThe global burden of CKD attributable to PM2.5 is substantial, varies by geography and is disproportionally borne by disadvantaged countries. Most of the burden is associated with PM2.5 levels above the WHO guidelines, suggesting that achieving those targets may yield reduction in CKD burden.


2014 ◽  
Vol 7 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Susan C. Anenberg ◽  
J. Jason West ◽  
Hongbin Yu ◽  
Mian Chin ◽  
Michael Schulz ◽  
...  

BMJ Open ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. e022450 ◽  
Author(s):  
Benjamin Bowe ◽  
Yan Xie ◽  
Tingting Li ◽  
Yan Yan ◽  
Hong Xian ◽  
...  

ObjectiveTo quantitate the 2016 global and national burden of chronic kidney disease (CKD) attributable to ambient fine particulate matter air pollution ≤ 2.5 μm in aerodynamic diameter (PM2.5).DesignWe used the Global Burden of Disease (GBD) study data and methodologies to estimate the 2016 burden of CKD attributable to PM2.5in 194 countries and territories. Population-weighted PM2.5levels and incident rates of CKD for each country were curated from the GBD study publicly available data sources.SettingGBD global and national data on PM2.5and CKD.Participants194 countries and territories.Main outcome measuresWe estimated the attributable burden of disease (ABD), years living with disability (YLD), years of life lost (YLL) and disability-adjusted life-years (DALYs).ResultsThe 2016 global burden of incident CKD attributable to PM2.5was 6 950 514 (95% uncertainty interval: 5 061 533–8 914 745). Global YLD, YLL and DALYs of CKD attributable to PM2.5were 2 849 311 (1 875 219–3 983 941), 8 587 735 (6 355 784–10 772 239) and 11 445 397 (8 380 246–14 554 091), respectively. Age-standardised ABD, YLL, YLD and DALY rates varied substantially among geographies. Populations in Mesoamerica, Northern Africa, several countries in the Eastern Mediterranean region, Afghanistan, Pakistan, India and several countries in Southeast Asia were among those with highest age-standardised DALY rates. For example, age-standardised DALYs per 100 000 were 543.35 (391.16–707.96) in El Salvador, 455.29 (332.51–577.97) in Mexico, 408.41 (283.82–551.84) in Guatemala, 238.25 (173.90–303.98) in India and 178.26 (125.31–238.47) in Sri Lanka, compared with 5.52 (0.82–11.48) in Sweden, 6.46 (0.00–14.49) in Australia and 12.13 (4.95–21.82) in Canada. Frontier analyses showed that Mesoamerican countries had significantly higher CKD DALY rates relative to other countries with comparable sociodemographic development.ConclusionsOur results demonstrate that the global toll of CKD attributable to ambient air pollution is significant and identify several endemic geographies where air pollution may be a significant driver of CKD burden. Air pollution may need to be considered in the discussion of the global epidemiology of CKD.


2020 ◽  
Author(s):  
Yazhen Gong ◽  
Shanjun Li ◽  
Nicholas Sanders ◽  
Guang Shi

Sign in / Sign up

Export Citation Format

Share Document