scholarly journals The effects of heat wave warning system on mortality in urban and rural populations in South Korea through 2001-2016

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
S. Heo ◽  
A. Nori-Sarma ◽  
K. Lee ◽  
F. Dominici ◽  
M. Bell
2017 ◽  
Vol 88 (6) ◽  
pp. 1491-1498 ◽  
Author(s):  
Dong‐Hoon Sheen ◽  
Jung‐Ho Park ◽  
Heon‐Cheol Chi ◽  
Eui‐Hong Hwang ◽  
In‐Seub Lim ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 11-18
Author(s):  
Hyeon-Cheol Lee ◽  
Young-Jun Cho ◽  
Byunghwan Lim ◽  
Seung-Bum Kim

In this study, weather patterns (WPs) associated with the heat wave in South Korea are objectively classified by applying <i>K</i>-means clustering analysis. The representative weather patterns that caused the heat wave were divided into three WPs, namely WP 1, WP 2, and WP 3. The heat wave over the Korean Peninsula was mainly related to the expansion of the North Pacific High (NPH). Moreover, we analyzed the relationship between casualties and WPs of the heat wave. In WP 1, the isobar of NPH was located in the southern part of South Korea. Most casualties (18 people) occurred in this region. In WP 2, NPH was distributed throughout South Korea, with nationwide casualties of 44 people. Moreover, the duration of the heat wave for WP 2 was the longest, at 4.5 days. WP 3 occurred mainly in June, when the NPH was not yet developed, presenting the smallest number of casualties.


2019 ◽  
Vol 3 ◽  
pp. 241
Author(s):  
Lim Y ◽  
Lee K ◽  
Bae H ◽  
Kim D ◽  
Yoo H ◽  
...  
Keyword(s):  

2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2021 ◽  
Vol 8 (4) ◽  
pp. 315-322
Author(s):  
Eunju Lee ◽  
Sungwon Shin

Predicting tsunami hazards based on the tsunami source, propagation, runup patterns is critical to protect humans and property. Potential tsunami zone, as well as the historical tsunamis in 1983 and 1993, can be a threat to the east coast of South Korea. The Korea Meteorological Administration established a tsunami forecast warning system to reduce damage from tsunamis, but it does not consider tsunami amplification in the bay due to resonance. In this study, the Numerical model, Cornell Multi-grid Coupled Tsunami model, was used to investigate natural frequency in the bay due to coastal geometry. The study area is Yeongill bay in Pohang, southeast of South Korea, because this area is a natural bay and includes three harbors where resonance significantly occurs. This study generated a Gaussian-shaped tsunami, propagated it into the Yeongill bay, and compared numerical modeling results with data from tide gauge located in Yeongill bay during several storms through spectral analysis. It was found that both energies of tsunamis and storms were amplified at the same frequencies, and maximum tsunami wave height was amplified about 3.12 times. The results in this study can contribute to quantifying the amplification of tsunami heights in the bay.


Sign in / Sign up

Export Citation Format

Share Document