scholarly journals Efficacy of Heat Wave Warning System in Reducing Mortality Risk of Heat Waves in South Korea, Utilizing Difference-in-Difference and Propensity Score Weighting approaches

2019 ◽  
Vol 3 ◽  
pp. 290
Author(s):  
Heo S ◽  
Nori-Sarma A ◽  
Lee K ◽  
Benmarhnia T ◽  
Dominici F ◽  
...  
2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2017 ◽  
Vol 56 (10) ◽  
pp. 2653-2670 ◽  
Author(s):  
Hannah Nissan ◽  
Katrin Burkart ◽  
Erin Coughlan de Perez ◽  
Maarten Van Aalst ◽  
Simon Mason

AbstractThis paper proposes a heat-wave definition for Bangladesh that could be used to trigger preparedness measures in a heat early warning system (HEWS) and explores the climate mechanisms associated with heat waves. A HEWS requires a definition of heat waves that is both related to human health outcomes and forecastable. No such definition has been developed for Bangladesh. Using a generalized additive regression model, a heat-wave definition is proposed that requires elevated minimum and maximum daily temperatures over the 95th percentile for 3 consecutive days, confirming the importance of nighttime conditions for health impacts. By this definition, death rates increase by about 20% during heat waves; this result can be used as an argument for public-health interventions to prevent heat-related deaths. Furthermore, predictability of these heat waves exists from weather to seasonal time scales, offering opportunities for a range of preparedness measures. Heat waves are associated with an absence of normal premonsoonal rainfall brought about by anomalously strong low-level westerly winds and weak southerlies, detectable up to approximately 10 days in advance. This circulation pattern occurs over a background of drier-than-normal conditions, with below-average soil moisture and precipitation throughout the heat-wave season from April to June. Low soil moisture increases the odds of heat-wave occurrence for 10–30 days, indicating that subseasonal forecasts of heat-wave risk may be possible by monitoring soil-moisture conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249199
Author(s):  
Mbaye Faye ◽  
Abdoulaye Dème ◽  
Abdou Kâ Diongue ◽  
Ibrahima Diouf

Objective The aim of this study is to find the most suitable heat wave definition among 15 different ones and to evaluate its impact on total, age-, and gender-specific mortality for Bandafassi, Senegal. Methods Daily weather station data were obtained from Kedougou situated at 17 km from Bandafassi from 1973 to 2012. Poisson generalized additive model (GAM) and distributed lag non-linear model (DLNM) are used to investigate the effect of heat wave on mortality and to evaluate the nonlinear association of heat wave definitions at different lag days, respectively. Results Heat wave definitions, based on three or more consecutive days with both daily minimum and maximum temperatures greater than the 90th percentile, provided the best model fit. A statistically significant increase in the relative risk (RRs 1.4 (95% Confidence Interval (CI): 1.2–1.6), 1.7 (95% CI: 1.5–1.9), 1.21 (95% CI: 1.08–1.3), 1.2 (95% CI: 1.04–1.5), 1.5 (95% CI: 1.3–1.8), 1.4 (95% CI: 1.2–1.5), 1.5 (95% CI: 1.07–1.6), and 1.5 (95% CI: 1.3–1.8)) of total mortality was observed for eight definitions. By using the definition based on the 90th percentile of minimum and maximum temperature with a 3-day duration, we also found that females and people aged ≥ 55 years old were at higher risks than males and other different age groups to heat wave related mortality. Conclusion The impact of heat waves was associated with total-, age-, gender-mortality. These results are expected to be useful for decision makers who conceive of public health policies in Senegal and elsewhere. Climate parameters, including temperatures and humidity, could be used to forecast heat wave risks as an early warning system in the area where we conduct this research. More broadly, our findings should be highly beneficial to climate services, researchers, clinicians, end-users and decision-makers.


2018 ◽  
Vol 48 (4) ◽  
pp. 428-435 ◽  
Author(s):  
Daniel Oudin Åström ◽  
Christofer Åström ◽  
Bertil Forsberg ◽  
Ana M. Vicedo-Cabrera ◽  
Antonio Gasparrini ◽  
...  

Aims: The present study aimed to investigate if set thresholds in the Swedish heat-wave warning system are valid for all parts of Sweden and if the heat-wave warning system captures a potential increase in all-cause mortality and coronary heart disease (CHD) mortality. An additional aim was to investigate whether neighbourhood deprivation modifies the relationship between heat waves and mortality. Methods: From 1990 until 2014, in 14 municipalities in Sweden, we collected data on daily maximum temperatures and mortality for the five warmest months. Heat waves were defined according to the categories used in the current Swedish heat-wave warning system. Using a case-crossover approach, we investigated the association between heat waves and mortality in Sweden, as well as a modifying effect of neighbourhood deprivation. Results: On a national as well as a regional level, heat waves significantly increased both all-cause mortality and CHD mortality by approximately 10% and 15%, respectively. While neighbourhood deprivation did not seem to modify heat wave–related all-cause mortality, CHD mortality did seem to modify the risk. Conclusions: It may not be appropriate to assume that heat waves in Sweden will have the same impact in a northern setting as in a southern, or that the impact of heat waves will be the same in affluent and deprived neighbourhoods. When designing and implementing heat-wave warning systems, neighbourhood, regional and national information should be incorporated.


2020 ◽  
Author(s):  
Byoungchull Oh ◽  
Cheolho Hwang ◽  
Won-tae Yun ◽  
Jongha Kim

<p>Damages in cities resulting from climate change are made irregularly and untypically, thus difficult to predict due to heavily concentrated buildings and population, etc. This study aims to introduce the results of our Urban Climatic Environment Assessment Model System(Model System hereinafter) as well as its construction, which is designed to provide impact assessment of heat waves in cities, to reduce damages, and to build capacities against it.</p><p>Our Model System is based on the Unified Model(UM : an integrated model of Korea Meteorological Administration), and satellite data is necessary to verify the Model System. However, we have developed high resolution (10m ~ 100m) urban assessment model to analyze the impacts of heat waves in city of Gwangju to help local government by developing and implementing environmental policies. The outputs of our Model System will contribute to the decision making.</p><p>Following two approaches were considered for impact assesment. Firstly, high spatial resolution model (in 10m to 100m level) using ensemble and down-scaling techniques can help identification of vulnerable areas in the city. Also, analyzed data can be linked to local GIS and land use map for analysis and assessment of the heat waves, which enables to make 48h heat wave forecast.</p><p>Secondly, CFD micro-scale analysis using super-computer enables to analyze the vulnerable areas with components of : temperature, wind, humidity, solar radiation quantity, cloud cover, etc. Data achieved via our Model System will be used as objective and scientific basis for developing heat wave policies. It will also give guidance for heat wave early warning.</p><p>It is expected that local governments can utilize our Model System to identify and analyze patterns and characteristics of heat waves in the city, and make decisions and develop environment-related policies on the objective and scientific basis preemptive response for vulnerable areas in the region.</p><p>Keywords : heat waves, Urban Climatic Environment Assessment Model System, spatial resolution, ensemble average, down-scaling, CFD, micro-scale, Early warning system</p><p> </p><p>* This research was supported by a grant from Research Program funded by International Climate & Environment Center(ICEC).</p>


Sign in / Sign up

Export Citation Format

Share Document