scholarly journals Technological Possibilities of the Carbide Tools Application for Precision Machining of WCLV Hardened Steel

2022 ◽  
Vol 16 (1) ◽  
pp. 141-148
Author(s):  
Marcin Grabowski ◽  
Józef Gawlik ◽  
Joanna Krajewska-Śpiewak ◽  
Sebastian Skoczypiec ◽  
Piotr Tyczyński
1999 ◽  
Author(s):  
Katsuhito Yoshida ◽  
Satoru Kukino ◽  
Takashi Harada ◽  
Tomohiro Fukaya ◽  
Junichi Shiraishi ◽  
...  

Abstract PCBN (Polycrystalline Cubic Boron Nitride) cutting tools have become very familiar in the industries for cutting hardened steel parts and the demand for PCBN tools is growing rapidly. One of the reasons for this is the trend of replacing grinding processes with cutting. Although the trend of processing is to use more cutting, there still remains grinding in many processing fields. High precision machining and high speed interrupted machining have been such fields. In this study it has been verified that a novel cutting method can be applied to high precision machining with the smoothness of Rz 0.8 μm and that a new PCBN has sufficient reliability against tool failure in high speed (< 250m/min) interrupted cutting. Thus cutting has become applicable to those machining and the trend of replacement of grinding with cutting will be enhanced. Those new technologies will be introduced in this report.


2011 ◽  
Vol 188 ◽  
pp. 73-77
Author(s):  
Bin Jiang ◽  
Yin Jin Yang ◽  
Xian Li Liu ◽  
Chang Xing Qi ◽  
Xing Fa Zhao

In high speed ball-end milling hardened steel, the increase of hardened steel hardness and cutting efficiency make cutting loads changing, and fuzzy and uncertain properties exist in evaluating cutting vibration and machining surface quality. To explore the means for high efficiency and precision machining hardened steel, carried out the experiment of high speed ball-end milling hardened steel, and acquired behavior data of high speed milling characteristic and influencing factors. Founded the model of high speed ball-end milling behavior characteristic using grey system theory, acquired the behavior sequence of high speed ball-end milling hardened steel. Accomplished incidence analysis of high speed milling characteristic, and proposed the solution to high efficiency and precision machining hardened steel. Results indicate that the increase in cutting efficiency makes workpiece vibration and the increase in surface roughness. The influence of the row spacing on the vibration in feed direction is more remarkable than the vibration in row spacing direction. Grey incidence matrix of high speed ball-end milling characteristic reveals the interaction level of characteristic and influencing factors. Increase in rotational speed and row spacing, and decrease in feed per tooth and inclination angle of cutter can restrain availably the vibration in high speed ball-end milling hardened steel, and obtain higher cutting efficiency and surface quality.


Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


1979 ◽  
Vol 1 (1) ◽  
pp. 33-37 ◽  
Author(s):  
D.K. Pal ◽  
S.N. Mukherjee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document