scholarly journals Soil Fertility Analysis for the Cultivation of Sugarcane and Rice in Thiruvarur Area

2018 ◽  
Vol 6 (3) ◽  
pp. 407-420
Author(s):  
M. Shanmuganathan ◽  
A. Rajendran

In order to improve the yield of any crop, it is absolutely essential to carry out soil testing periodically. This will not only improve the procurement but also will provide eco-friendly ambience. Testing all soil quality parameters will be a laborious and time-consuming process. To overcome this problem, soli quality index can be of immense help. Unlike many water quality indices available, only a very few soil quality indices are in existence. Newly developed soil quality index called Heber soil quality index (HSQI) is widely used to identify and differentiate the various types of soils. The HSQI values of all samples were found to be in the range of 72.36 – 83.83 divulging a fact that the nature of soils inspected in this examination is good for the plantation of sugarcane and rice. The index was found to be time saving and cost-effective method of assessing the fertile nature of the soil for the effective farming of sugarcane and rice. Soil quality assessment in the light of HSQI is proposed to offer a better perceptive of the soil property measures to be taken to improve the quality of soil system for the better yield of any crop including sugarcane and rice.

Author(s):  
Vassilios Triantafyllidis ◽  
Achilleas Kontogeorgosa Chariklia Kosma ◽  
Angelos Patakas

Soil quality is a complex functional concept, which cannot be measured directly but only be inferred from both soil characteristics and cultivation practices. Among different approaches used, Soil Quality Index (SQI) is considered to be the most appropriate for quantitative assessment of soil quality. Since, there is no standard method for SQI estimation, the aim of this study is to identify soil quality parameters that could be used for the development of reliable SQI which could be effectively applied in Mediterranean ecosystems. Three different methods resulting in different SQIs were evaluated regarding their ability to monitor changes in agricultural soil properties over time. Overall, a set of soil’s parameters was used as soil health indicators (pH, CaCO3, EC, NO3-N, P, K, Mg, Cu, B, Zn, Fe, Mn, Silt, Clay, Sand and SOC) derived from 605 soil samples used to calculate the above SQIs. The most reliable SQI to distinguish the effect of the examined parameters was the weighted additive approach. These 16 soil indicators can be used as decision support tool for soil management practices, as well as indirect measures of soil function, serving to assess soil health for a sustainable Mediterranean agro-environment.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


2021 ◽  
Vol 125 ◽  
pp. 107580
Author(s):  
Wuping Huang ◽  
Mingming Zong ◽  
Zexin Fan ◽  
Yuan Feng ◽  
Shiyu Li ◽  
...  

2015 ◽  
Vol 79 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
Vladimir Ivezić ◽  
Bal Ram Singh ◽  
Vlatka Gvozdić ◽  
Zdenko Lončarić

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Xu ◽  
Wenbao Mi ◽  
Nan Mi ◽  
Xingang Fan ◽  
Yao Zhou ◽  
...  

AbstractDesert steppe soil security issues have been the focus of attention. Therefore, to understand the impact of industrial activities on the soil quality of desert grasslands, this experiment investigated the Gaoshawo Industrial Concentration Zone in Yanchi County. Based on the distance and direction from the industrial park, sample plots were established at intervals of 1–2 km. A total of 82 surface soil samples (0–20 cm) representing different pollution sources were collected. The samples were analysed for pH, total nitrogen, total phosphorus, available phosphorus, available potassium, organic matter, copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn). The desert steppe soil quality was analysed based on the integrated fertility index (IFI) and the Nemerow pollution index (PN), followed by the calculation of the comprehensive soil quality index (SQI), which considers the most suitable soil quality indicators through a geostatistical model. The results showed that the IFI was 0.393, indicating that the soil fertility was relatively poor. Excluding the available potassium, the nugget coefficients of the fertility indicators were less than 25% and showed strong spatial autocorrelation. The average values of Cu, Cd, Cr, Pb and Zn were 21.64 ± 3.26, 0.18 ± 0.02, 44.99 ± 21.23, 87.18 ± 25.84, and 86.63 ± 24.98 mg·kg−1, respectively; the nugget coefficients of Cr, Pb and Zn were 30.79–47.35%. Pb was the main element causing heavy metal pollution in the study area. Higher PN values were concentrated north of the highway in the study area, resulting in lower soil quality in the northern region and a trend of decreasing soil quality from south to north. The results of this research showed that the average SQI was 0.351 and the soil quality was extremely low. Thus, industrial activities and transportation activities in the Gaoshawo Industrial Zone significantly impact the desert steppe soil quality index.


Sign in / Sign up

Export Citation Format

Share Document