scholarly journals Effect of a Nitrogen-Fixing Actinorhizal Shrub on Herbaceous Vegetation in a Mixed Conifer Forest of Central Himalaya

2015 ◽  
Vol 10 (3) ◽  
pp. 957-966 ◽  
Author(s):  
Kiran Bargali ◽  
Nidhi Maurya ◽  
S. S Bargali

In this study, we examined the effect of a nitrogen-fixing shrub Coriaria nepalensis Wall on herb species composition, diversity and biomass. The effect was measured in terms of species richness, diversity and biomass of herb species in three sites varying in Coriaria density viz. site 1 (low Coriaria density; 20 ha-1), site-2 (medium Coriaria density; 120 ha-1) and site-3 (high Coriaria density 190 ha-1). Species richness was minimum at Site-1 (16 species), and maximum at site-2 (27 species). G. aparine dominated site-1 and Arthraxon sp dominated site-2 and 3. The individual herb density ranged between 0.40 - 42.40 m-2, and total herb density ranged between 138- 170.4 m-2 and was maximum at site-2. Value for species richness (27) and Shannon Index (3.72) was highest for medium Coriaria density site and lowest for low Coriaria density site. Simpson Index ranged between 0.11 and 0.14 and was lowest for site-2(medium Coriaria density) indicating that at this the dominance was shared by many species. Along the gradient of Coriaria density, maximum biomass was recorded at site-3 with highest Coriaria density and lowest at site-2 with medium Coriaria density. This may be due to the symbiotic nitrogen fixing ability of Coriaria that improve the habitat quality. The facilitative effect of C. nepalensis in terms of soil amelioration and herb growth can be used to regenerate degraded forest ecosystems.

2005 ◽  
Vol 71 (5) ◽  
pp. 2713-2722 ◽  
Author(s):  
Chris M. Yeager ◽  
Diana E. Northup ◽  
Christy C. Grow ◽  
Susan M. Barns ◽  
Cheryl R. Kuske

ABSTRACT This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.


2005 ◽  
Vol 35 (5) ◽  
pp. 1061-1070 ◽  
Author(s):  
Marc D Meyer ◽  
Malcolm P North ◽  
Douglas A Kelt

In many western North American forests, prescribed burning and mechanical thinning are widely used to reduce fuels and restore stand conditions after a century of fire suppression. Few studies have followed the relative impacts of these treatments on the production and consumption of truffles in forest ecosystems, particularly in the Sierra Nevada of California. Using a full-factorial completely randomized design, we examined the short-term impacts of prescribed burning (no burn and burn), mechanical thinning (no thin, light thin, and heavy thin), and combinations of these treatments on the production of truffles and their consumption by lodgepole chipmunks (Neotamias speciosus Merriam) in a mixed-conifer forest of the southern Sierra Nevada of California. Truffle frequency, biomass, and species richness were lower in thinned or burned plots than controls, as was the frequency and generic richness of truffles in the diet of N. speciosus. Truffle frequency, biomass, and species richness, and truffle consumption by N. speciosus were lower in heavily thinned and thinned and burned plots than in those exclusively burned. These results suggest that either thinning or burning can reduce short-term truffle production and consumption, and potentially the dispersal of ectomycorrhizal spores by small mammals. Moreover, truffles decreased with treatment intensity, suggesting heavy thinning and higher burn intensity, particularly when applied together, can significantly affect short-term truffle abundance and small mammal consumption.


2010 ◽  
Vol 40 (9) ◽  
pp. 1803-1814 ◽  
Author(s):  
Danny L. Fry ◽  
Scott L. Stephens

Descriptions of spatial patterns are important components of forest ecosystems, providing insights into functions and processes, yet basic spatial relationships between forest structures and fuels remain largely unexplored. We used standardized omnidirectional semivariance modeling to examine the spatial pattern of fuels and forest structure measured in a systematic nested plot grid covering 144 ha. Forest structure variables were spatially dependent at scales ranging from 62 to 572 m. Cross-variograms of fuels and forest structure showed both positive and negative correlations, ranging from 0.04 to 0.67. Notably, fine fuels were correlated positively and negatively with forest structure variables of white fir ( Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) and Jeffrey pine ( Pinus jeffreyi Balf.), respectively. Old-growth Jeffrey pine – mixed conifer forest within the study area exhibited both identifiable spatial correlations and high stand-level spatial heterogeneity, as demonstrated by the influence of outliers on the underlying spatial pattern. The spatial dependency of fuels with species-specific variables suggests that less common species may have a large influence in the characterization of forest attributes and that fuel classifications may be improved by accounting for the spatial distributions of overstory species. Spatial correlations have many applications to forest management, including the classification and mapping of forest structure, establishing guidelines for fuel treatments, and restoration of old-growth forest ecosystems.


1994 ◽  
Vol 24 (6) ◽  
pp. 1149-1159 ◽  
Author(s):  
Melissa Savage

Anthropogenic and natural disturbances have been implicated in recent mortality episodes in montane forests. While the role of natural disturbance in patterning forest ecosystems has been widely explored in recent decades, the agency of human influence is less well understood. In this paper, stand structure analysis is used to characterize patterns of mortality in a montane mixed conifer forest in southern California subject to multiple influences, both anthropogenic and natural, including fire suppression, air pollution, drought, competition, and insect infestation. While it is difficult to separate the contribution of any one of these factors to tree death, because there have been cumulative and synchronous disturbances, successional trends can be identified. Anthropogenic influences appear to abet the effects of natural disturbance in enhancing the shift from early successional pines to species that tolerate stresses such as drought, fire suppression, or competition that result from increased stand density, or a combination of such stresses.


2010 ◽  
Vol 259 (5) ◽  
pp. 904-915 ◽  
Author(s):  
Siyan Ma ◽  
Amy Concilio ◽  
Brian Oakley ◽  
Malcolm North ◽  
Jiquan Chen

2008 ◽  
Vol 69 (2) ◽  
pp. 263-275 ◽  
Author(s):  
R. Scott Anderson ◽  
Renata B. Jass ◽  
Jaime L. Toney ◽  
Craig D. Allen ◽  
Luz M. Cisneros-Dozal ◽  
...  

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.


Sign in / Sign up

Export Citation Format

Share Document