scholarly journals A Review on Advanced Oxidation Processes for Effective Water Treatment

2017 ◽  
Vol 12 (3) ◽  
pp. 469-489 ◽  
Author(s):  
Nirmalendu Mishra ◽  
Rajesh Reddy ◽  
Aneek Kuila ◽  
Ankita Rani ◽  
Ahmad Nawaz ◽  
...  

Advanced oxidation processes (AOPs) such as fenton, ozonation, sonolysis, photocatalysis, UV photolysis, and wet air oxidation are one amongst the most suitable techniques for water and wastewater treatment. These, AOPs have also been chosen for the complete degradation of various categories of emerging pollutants that could not be managed by any conventional technologies. The mineralization is achieved by chemical reactions between the various reacting species generated and the pollutants. The present article provides a vivid view of the mechanistic features of various AOPs and its possible synergisation for process enhancement to achieve better treatment efficiency.

Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


2007 ◽  
Vol 55 (12) ◽  
pp. 221-227 ◽  
Author(s):  
A. Rubalcaba ◽  
M.E. Suárez-Ojeda ◽  
F. Stüber ◽  
A. Fortuny ◽  
C. Bengoa ◽  
...  

Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.


2018 ◽  
Vol 139 ◽  
pp. 118-131 ◽  
Author(s):  
David B. Miklos ◽  
Christian Remy ◽  
Martin Jekel ◽  
Karl G. Linden ◽  
Jörg E. Drewes ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1828 ◽  
Author(s):  
Sonia Guerra-Rodríguez ◽  
Encarnación Rodríguez ◽  
Devendra Singh ◽  
Jorge Rodríguez-Chueca

High oxidation potential as well as other advantages over other tertiary wastewater treatments have led in recent years to a focus on the development of advanced oxidation processes based on sulfate radicals (SR-AOPs). These radicals can be generated from peroxymonosulfate (PMS) and persulfate (PS) through various activation methods such as catalytic, radiation or thermal activation. This review manuscript aims to provide a state-of-the-art overview of the different methods for PS and PMS activaton, as well as the different applications of this technology in the field of water and wastewater treatment. Although its most widespread application is the elimination of micropollutants, its use for the disinfection of wastewater is gaining increasing interest. In addition, the possibility of combining this technology with ultrafiltration membranes to improve the water quality and lifespan of the membranes has also been discussed. Finally, a brief economic analysis of this technology has been undertaken and the different attempts made to implement it at full-scale have been summarized. As a result, this review tries to be useful for all those people working in that area.


Author(s):  
Ahmed Hisham Hilles ◽  
Salem S. Abu Amr ◽  
Hamidi Abdul Aziz ◽  
Mohammed J. K. Bashir

Advanced oxidation processes (AOPs) have recently received attraction for treatment of different wastewaters. AOPs have an ability to oxidize a high quantity of refractory organic matters, traceable organic, or to increase wastewater biodegradability as a pre-treatment prior to an ensuing biological treatment. In this chapter, the fundamental mechanisms of different AOPs such as ozonation, hydrogen peroxide, UV, persulfate, and Fenton oxidation are summarized. The combination of different oxidation processes such as O3/H2O2, O3/UV, O3/Fenton+, O3/persulfate are evaluated. Several persulfate activation techniques are also summarized.


Sign in / Sign up

Export Citation Format

Share Document