Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment

2007 ◽  
Vol 55 (12) ◽  
pp. 221-227 ◽  
Author(s):  
A. Rubalcaba ◽  
M.E. Suárez-Ojeda ◽  
F. Stüber ◽  
A. Fortuny ◽  
C. Bengoa ◽  
...  

Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

2017 ◽  
Vol 12 (3) ◽  
pp. 469-489 ◽  
Author(s):  
Nirmalendu Mishra ◽  
Rajesh Reddy ◽  
Aneek Kuila ◽  
Ankita Rani ◽  
Ahmad Nawaz ◽  
...  

Advanced oxidation processes (AOPs) such as fenton, ozonation, sonolysis, photocatalysis, UV photolysis, and wet air oxidation are one amongst the most suitable techniques for water and wastewater treatment. These, AOPs have also been chosen for the complete degradation of various categories of emerging pollutants that could not be managed by any conventional technologies. The mineralization is achieved by chemical reactions between the various reacting species generated and the pollutants. The present article provides a vivid view of the mechanistic features of various AOPs and its possible synergisation for process enhancement to achieve better treatment efficiency.


2012 ◽  
Vol 51 (50) ◽  
pp. 16171-16181 ◽  
Author(s):  
Chitra Kalyanaraman ◽  
Sri Bala Kameswari Kanchinadham ◽  
L. Vidya Devi ◽  
S. Porselvam ◽  
J. Raghava Rao

2014 ◽  
Vol 70 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Huyen Trang Luu ◽  
Kisay Lee

Advanced oxidation processes (AOPs) composed of O3, H2O2 and ultraviolet (UV) were applied to degrade tetracycline (TC). Degradation efficiency was evaluated in terms of changes in absorbance (ABS) and total organic carbon (TOC). The change in biotoxicity was monitored with Escherichia coli and Vibrio fischeri. The improvement in biodegradability during oxidation was demonstrated through 5-day biochemical oxygen demand/chemical oxygen demand ratio and aerobic biological treatment. The combination of O3/H2O2/UV and O3/UV showed the best performance for the reductions in ABS and TOC. However, mineralization and detoxification were not perfect under the experimental conditions that were used in this study. Therefore, for the ultimate treatment of TC compounds, it is suggested that AOP treatment is followed by biological treatment, utilizing enhanced biodegradability. In this study, aerobic biological treatment by Pseudomonas putida was performed for O3/UV-treated TC. It was confirmed that O3/UV treatment improved TOC reduction and facilitated complete mineralization in biological treatment.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3515
Author(s):  
Yiqing Zhang ◽  
Kashif Shaad ◽  
Derek Vollmer ◽  
Chi Ma

Textile manufacturing is a multi-stage operation process that produces significant amounts of highly toxic wastewater. Given the size of the global textile market and its environmental impact, the development of effective, economical, and easy-to handle alternative treatment technologies for textile wastewater is of significant interest. Based on the analysis of peer-reviewed publications over the last two decades, this paper provides a comprehensive review of advanced oxidation processes (AOPs) on textile wastewater treatment, including their performances, mechanisms, advantages, disadvantages, influencing factors, and electrical energy per order (EEO) requirements. Fenton-based AOPs show the lowest median EEO value of 0.98 kWh m−3 order−1, followed by photochemical (3.20 kWh m−3 order−1), ozonation (3.34 kWh m−3 order−1), electrochemical (29.5 kWh m−3 order−1), photocatalysis (91 kWh m−3 order−1), and ultrasound (971.45 kWh m−3 order−1). The Fenton process can treat textile effluent at the lowest possible cost due to the minimal energy input and low reagent cost, while Ultrasound-based AOPs show the lowest electrical efficiency due to the high energy consumption. Further, to explore the applicability of these methods, available results from a full-scale implementation of the enhanced Fenton technology at a textile mill wastewater treatment plant (WWTP) are discussed. The WWTP operates at an estimated cost of CNY ¥1.62 m−3 (USD $0.23 m−3) with effluent meeting the China Grade I-A pollutant discharge standard for municipal WWTPs, indicating that the enhanced Fenton technology is efficient and cost-effective in industrial treatment for textile effluent.


2013 ◽  
Vol 68 (9) ◽  
pp. 1976-1983 ◽  
Author(s):  
C. vom Eyser ◽  
A. Börgers ◽  
J. Richard ◽  
E. Dopp ◽  
N. Janzen ◽  
...  

The entry of pharmaceuticals into the water cycle from sewage treatment plants is of growing concern because environmental effects are evident at trace levels. Ozonation, UV- and UV/H2O2-treatment were tested as an additional step in waste water treatment because they have been proven to be effective in eliminating aqueous organic contaminants. The pharmaceuticals carbamazepine, ciprofloxacin, diclofenac, metoprolol and sulfamethoxazole as well as the personal care products galaxolide and tonalide were investigated in terms of degradation efficiency and by-product formation in consideration of toxic effects. The substances were largely removed from treatment plant effluent by ozonation, UV- and UV/H2O2-treatment. Transformation products were detected in all tested treatment processes. Accompanying analysis showed no genotoxic, cytotoxic or estrogenic potential for the investigated compounds after oxidative treatment of real waste waters. The results indicate that by-product formation from ozonation and advanced oxidation processes does not have any negative environmental impact.


Author(s):  
Weihua Sun ◽  
Lujun Chen ◽  
Jianlong Wang

AbstractAdvanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.


Chemosphere ◽  
2007 ◽  
Vol 66 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
María Eugenia Suarez-Ojeda ◽  
Albert Guisasola ◽  
Juan A. Baeza ◽  
Azael Fabregat ◽  
Frank Stüber ◽  
...  

2016 ◽  
Vol 38 (9) ◽  
pp. 1093-1099 ◽  
Author(s):  
Daria Pęziak-Kowalska ◽  
Florence Fourcade ◽  
Michał Niemczak ◽  
Abdeltif Amrane ◽  
Łukasz Chrzanowski ◽  
...  

2015 ◽  
Vol 72 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Tatjana Tišler ◽  
Boštjan Erjavec ◽  
Renata Kaplan ◽  
Marin Şenilă ◽  
Albin Pintar

Abstract In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity.


Sign in / Sign up

Export Citation Format

Share Document