scholarly journals Predictive Duty Cycle of Maximum Power Point Tracking Based on Artificial Neural Network and Bootstrap Method for Hybrid Photovoltaic/ Wind Turbine System Considering Limitation Voltage of Grid

Author(s):  
Feby Agung Pamuji

In this paper, we propose a new control-based the neural network and bootstrap method to get the predictive duty cycle for the maximum power point of hybrid Photovoltaic (PV) and Wind Turbine generator system (WTG) connected to 380 V grid. The neural network is designed to be controller by learning the data control of multi-input DC/ DC converter. The artificial neural network (ANN) needs many data for training then the ANN can give the predictive duty cycle to multi input DC/ DC converter. To get much data, we can use the bootstrap method to generate data from the real data. From Photovoltaic characteristic, we can get 344 real data after the data are made by bootstrap method we can get 8000 data. The 8000 data of PV can be used for training artificial neural network (ANN) of PV system. From wind turbine characteristic we can get 348 real data after the data are made by bootstrap method we can get 6000 data. The 6000 data of WT can be used for training artificial neural network of WT system. This new control has two responsibilities, are to shift the voltage of PV and WTG to optimum condition and to maintain the stability of grid system. From the simulation results those can be seen that the power of hybrid PV / WTG system using MPPT controller is in maximum power and has constant voltage and constant frequency of grid system.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


2020 ◽  
Vol 93 (1-4) ◽  
pp. 31-38
Author(s):  
Bilal Boudjellal ◽  
Tarak Benslimane

The purpose of this study is to improve the control performance of a Doubly Fed Induction Generator (DFIG) in a Wind Energy Conversion System (WECS) by using both of the conventional Proportional-Integral (PI) controllers and an Artificial Neural Network (ANN) based controllers. The rotor-side converter (RSC) voltages are controlled using a stator flux oriented control (FOC) to achieve an independent control of the active and reactive powers, exchanged between the stator of the DFIG and the power grid. Afterward, the PI controllers of the FOC are replaced with two ANN based controllers. A Maximum Power Point Tracking (MPPT) control strategy is necessary in order to extract the maximum power from the of wind energy system. A simulation model was carried out in MATLAB environment under different scenarios. The obtained results demonstrate the efficiency of the proposed ANN control strategy.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Sedaghati ◽  
Ali Nahavandi ◽  
Mohammad Ali Badamchizadeh ◽  
Sehraneh Ghaemi ◽  
Mehdi Abedinpour Fallah

In this paper, using artificial neural network (ANN) for tracking of maximum power point is discussed. Error back propagation method is used in order to train neural network. Neural network has advantages of fast and precisely tracking of maximum power point. In this method neural network is used to specify the reference voltage of maximum power point under different atmospheric conditions. By properly controling of dc-dc boost converter, tracking of maximum power point is feasible. To verify theory analysis, simulation result is obtained by using MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document