scholarly journals MPPT Full Bridge Converter using Fuzzy Type-2

Author(s):  
Annas Budi Prastyawan ◽  
Mohammad Zaenal Efendi ◽  
Farid Dwi Murdianto

Renewable energy application using Photovoltaic (PV) is developed as a conversion from solar energy into electrical energy. PV produces output power according to irradiation and temperature conditions. PV has a Maximum Power Point or MPP based on P-V characteristic curve. In certain conditions, PV has an unstable output power then the accuracy of the power generated is not maximum. MPPT method with conventional control is not optimal to resolves power inaccuracies in the system. When the system has a circuit problem, the conventional power converter will be damage. To achieve accuracy and maximize PV output, the Maximum Power Point method will find MPP. Using MPPT Fuzzy Type-2 method on the converter can reliably overcome the inaccuracies and tracking speed of PV power. Full Bridge Converter topology is used as a safety circuit with a high-frequency isolation transformer. Implemented on MATLAB/Simulink software, Simulation results in Model 1 show that the average power accuracy with Fuzzy Type-2 is 91.40% compared to Fuzzy Type-1 with an average power accuracy of 80.64%. In Model 2, Fuzzy Type-2 is 87.63% compared to Fuzzy Type-1 of 77.93%. MPPT method using fuzzy type-2 is better than using fuzzy type-1 in terms of power accuracy.Keywords: full bridge converter, fuzzy type-2, MATLAB/Simulink, maximum power point tracking, photovoltaic.

2020 ◽  
Vol 190 ◽  
pp. 00016
Author(s):  
Imam Abadi ◽  
Qurrotul Uyuniyah ◽  
Dwi Nur Fitriyanah ◽  
Yahya Jani ◽  
Kamaruddin Abdullah

World energy consumption increases with time, so that occur an energy imbalance. Many breakthroughs have developed to utilize renewable energy. The photovoltaic system is one of the easy-to-use renewable energies. The power conversion from PV fixed is still low, so the PV system is designed using the active dual-axis solar tracker. The PV tracker position can be adjusted to change the sun position to get maximum efficiency. The active dual-axis solar tracker system is integrated with the maximum power point tracking (MPPT) algorithm to keep PV operating at a maximum power point even though input variations change. The active dual-axis solar tracker system integrated with the maximum power point tracking (MPPT) algorithm to keep PV operating at a maximum power point even though input variations change. Tracking test simulation had done by comparing the output power of a fixed PV system with the active dual-axis solar tracker. Type-2 fuzzy logic based MPPT successfully increased the average output power by 10.48 % with the highest increase of 17.48 % obtained at 15:00 West Indonesia Time (GMT+7). The difference in power from a fixed PV system with the active dual-axis solar tracker of 36.08 W is from the output power worth 206.3 to 242.4 W.


2020 ◽  
Vol 190 ◽  
pp. 00026
Author(s):  
Mohammad Luthfansyah ◽  
Suyanto Suyanto ◽  
Abu Bakarr Momodu Bangura

Maximum Power Point Tracking (MPPT) is a method that can be used to optimize the electrical power output from solar panels. The performance of the MPPT method on solar panel systems can be influenced by many variables. One of them is the selection of a DC-DC power converter. DC-DC-DC Converter is a component that is used to optimize the performance of solar panels. Several types of DC-DC Converter are Buck, Buck-Boost, Single Ended Primary Inductance Converter (SEPIC), and CUK. Each converter has a different effect on solar panels output power. In order to observe and make a comprehensive analysis, simulations are performed through PSIM (Power Simulator) software on the performance of several DC-DC Converters that use Flower Pollination Algorithm (FPA) as the MPPT algorithm. Variables that observed are the output power characteristic, the response of the voltage-current ripple signal, and the accuracy of the converter in the process of reaching the maximum power point condition. As a result, CUK converter can obtain the highest value of solar panel output power, 145.02 W. A low ripple level with a stable power value response is entirely generated by CUK and SEPIC Converter. Overall, for this system, the CUK converter has better performance than the other converters.


JURNAL ELTEK ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 1
Author(s):  
Oktriza Melfazen ◽  
M. Taqijuddin Alawiy ◽  
Denda Dewatama

Terdapat rugi-rugi daya dalam proses menghasilkan daya pada Pembangkit Listrik Tenaga Surya (PLTS) konvensional. Sehingga energi yang dihasilkan tidak terserap secara maksimal. Sistem Pembangkit Listrik Tenaga Surya yang didesain dalam penelitian ini diharapkan dapat menghasilkan energi optimal dengan memanfaatkan kemampuan algoritma Maximum Power Point Tracking (MPPT) dengan metode Perturb and Obserb yang diaplikasikan pada topologi SEPIC. Pada penelitian ini, sistem  menggunakan panel surya berjenis amorphous 60W, sensor arus ACS712, sensor tegangan berupa pembagi tegangan dan rangkaian converter dengan topologi SEPIC yang dikontrol mikrokontroler Arduino UNO dengan sistem MPPT. Hasil penelitian yang didapat sebagai berikut: penempatan panel surya yang baik adalah menghadap atas (tegak lurus dengan permukaan bumi, sensor arus bekerja dengan eror rata-rata 1,92%, sensor tegangan mempunyai eror rata-rata 2,76%, dan topologi SEPIC dengan MPPT mempunyai hasil daya rata-rata 26,13 W.   There are power losses in the process of generating power in conventional Solar Power Plants (PLTS). So that the energy produced is not absorbed to the fullest. The Solar Power Sistem designed in this study is expected to produce optimal energy by utilizing the ability of the Maximum Power Point Tracking (MPPT) algorithm with the Perturb and Obserb method applied to the SEPIC topology. The sistem built in this study uses a 60W amorphous type solar panel, ACS712 current sensor, a voltage sensor in the form of a voltage divider and a converter circuit with a SEPIC topology controlled by an Arduino UNO microcontroller with an MPPT sistem.The results obtained as follows: a good placement of solar panels is facing upward (perpendicular to the surface of the earth, current sensors work with an average eror of 1.92%, voltage sensors have an average eror of 2.76%, and SEPIC topology with MPPT has an average power yield of 26.13 W.


Author(s):  
Leonardo Candido Corrêa ◽  
João Manoel Lenz ◽  
Cláudia Garrastazu Ribeiro ◽  
Felix Alberto Farret

An emulator for the nonconventional Magnus wind turbine was designed and developed in this study. A brief discussion is made of this special case of horizontal axis wind generator and of the main physics principles involving the Magnus phenomenon. A mathematical model was used to emulate the static behavior of the Magnus wind turbine and a detailed analysis is presented about its peculiar rotating cylinder characteristics. Based on the relationship between cylinder blade rotation and power coefficient, a hill climb search algorithm was developed to perform maximum power point tracking. The impact of the cylinder's rotation speed on the turbine net output power was evaluated. A controlled direct current motor was used to provide torque, based on the Magnus turbine model, and drive a permanent magnet synchronous generator (PMSG); the latter was controlled by a buck converter in order to extract the maximum generated power (MGP). Simulations of the Magnus wind turbine model and its maximum power point tracking (MPPT) control are also presented. A prototype of the proposed emulator was developed and operated by a user-friendly LabVIEW interface. Measurements of the power delivered to the load were acquired for different wind speeds; these results were analyzed and compared with simulated values showing a good behavior of the emulator with respect to the turbine model. The proposed control technique for maximizing the output power was validated by emulated results. The modeling and development of the Magnus turbine emulator also serve to encourage further studies on generation and control with this wind machine.


Author(s):  
Saravana Selvan ◽  
Pratap Nair ◽  
Umayal Umayal

A photovoltaic generator exhibits nonlinear voltage-current characteristics and its maximum power point varies with solar radiation and cell temperature. A Dc/Dc power converter is used to match the photovoltaic system to the load and to operate the PV (photo voltaic) cell array at maximum power point. Maximum Power Point Tracking (MPPT) is a process which tracks one maximum power point from PV array input, varying the ratio between the voltage and current delivered to get the most power it can. There are different techniques proposed with lot of algorithms are being used in the MPPT controller to extract the maximum power. It is very difficult for the photo voltaic designers, researchers and academic experts to select a particular MPPT technique for a particular application which requires the background knowledge and comparative features of various MPPT algorithms. This paper will be avaluable source for those who work in the photo voltaic generation, so its objective is to review the main MPPT algorithms in practice and analyzes the merits and demerits with various factors.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6722
Author(s):  
Mehmet Ali Yildirim ◽  
Marzena Nowak-Ocłoń

Solar photovoltaic (PV) energy is one of the most viable renewable energy sources, considered less polluting than fossil energy. However, the average power conversion efficiency of PV systems is between 15% and 20%, and they must operate with high efficiency. Photovoltaic cells have non-linear voltage–current characteristics that are dependent on environmental factors such as solar irradiation and temperature, and have low efficiency. Therefore, it becomes crucial to harvest the maximum power from PV panels. This paper aims to study and analyze the most common and well-known maximum power point tracking (MPPT) algorithms, perturb and observe (P&O) and incremental conductance (IncCond). These algorithms were found to be easy to implement, low-cost techniques suitable for large- and medium-sized photovoltaic applications. The algorithms were tested and compared dynamically using MATLAB/Simulink software. In order to overcome the low performance of the P&O and IncCond methods under time-varying and fast-changing solar irradiation, several modifications are proposed. Results show an improvement in the tracking and overall system efficiencies and a shortened response time compared with original techniques. In addition, the proposed algorithms minimize the oscillations around the maximum power point (MPP), and the power converges faster.


Sign in / Sign up

Export Citation Format

Share Document