Cyber-Physical Security

Author(s):  
Laura DeNardis

This chapter explains how cybersecurity increasingly connects to consumer safety and critical industrial infrastructure, as well as the digital economy and systems of democracy. Thus, the stakes of cyber-physical security have never been higher. From attacks on the energy sector to the attacks on the consumer Internet of things and democracy, cybersecurity governance is an existential concern in society. Regrettably, security is woefully inadequate. Market incentives privilege rapid product introduction rather than strong security. The chapter then suggests baseline recommendations, across all stakeholders, necessary for improving the cyber-physical ecosystem. It also looks at how cyber-physical systems complicate and increasingly shape already-difficult global cybersecurity governance questions such as when governments choose to stockpile knowledge of software vulnerabilities for cyber offense, rather than disclose them to secure critical infrastructure.

Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


2021 ◽  
Vol 58 ◽  
pp. 176-192
Author(s):  
Diego G.S. Pivoto ◽  
Luiz F.F. de Almeida ◽  
Rodrigo da Rosa Righi ◽  
Joel J.P.C. Rodrigues ◽  
Alexandre Baratella Lugli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document