Evaluate correlation function for excited-state of the harmonics oscillator sine asymmetric potential via numerical shooting method

2014 ◽  
Vol 8 ◽  
pp. 701-710
Author(s):  
Artit Hutem
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Artit Hutem ◽  
Piyarut Moonsri

We aimed to evaluate the ground-state and excite-state energy eigenvalue (En), wave function, and the time-independent correlation function of the atomic density fluctuation of a particle under the harmonics oscillator Cosine asymmetric potential (Saad et al. 2013). Instead of using the 6-point kernel of 4 Green’s function (Cherroret and Skipetrov, 2008), averaged over disorder, we use the numerical shooting method (NSM) to solve the Schrödinger equation of quantum mechanics system with Cosine asymmetric potential. Since our approach does not use complicated formulas, it requires much less computational effort when compared to the Green functions techniques (Cherroret and Skipetrov, 2008). We show that the idea of the program of evaluating time-independent correlation function of atomic density is underdamped motion for the Cosine asymmetric potential from the numerical shooting method of this problem. Comparison of the time-independent correlation function obtained from numerical shooting method by Boonchui and Hutem (2012) and correlation function experiment by Kasprzak et al. (2008). We show the intensity of atomic density fluctuation (δn(x)=n~(x)-m~(x)) in harmonics oscillator Cosine asymmetric potential by numerical shooting method.


2016 ◽  
Vol 855 ◽  
pp. 184-187
Author(s):  
Nonglux Sriboonrueang ◽  
Sanit Suwanwong ◽  
Artit Hutem

The paper deals with eigenvalues excited-state energy eigenvalues and wave-function of a particle under harmonics oscillator asymmetric potential using numerical shooting method. The numerical shooting method is generally regarded as one of the most efficient methods that give very accurate results because it integrates the Schrodinger equation directly, though in the numerical sense. If the value of parameter μ is small the energy eigenvalues of single particle will large and the parameter μ large the energy eigenvalues of single particle will small.


2018 ◽  
Vol 175 ◽  
pp. 05029
Author(s):  
Evan Berkowitz ◽  
Amy Nicholson ◽  
Chia Cheng Chang ◽  
Enrico Rinaldi ◽  
M.A. Clark ◽  
...  

There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions.To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3) flavor symmetric point with mπ~ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon) sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location) there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.


Sign in / Sign up

Export Citation Format

Share Document