scholarly journals A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

2015 ◽  
Vol 18 (1) ◽  
pp. 91-120 ◽  
Author(s):  
Kien T. Nguyen ◽  
Tai H. Thai ◽  
Thuc P. Vo
2021 ◽  
pp. 109963622110258
Author(s):  
Pham Van Vinh

This paper introduces a comprehensive investigation of bi-directional functionally graded sandwich plates using higher-order shear deformation theory and finite element method for the first time. A special procedure incorporating with a bi-linear four-node quadrilateral element is used to treat the free condition of shear stresses on two surfaces of the sandwich plates. Four types of the bi-directional functionally graded sandwich plates with several thickness ratios of layers are considered, in which the material properties of the layers are assumed to vary in both the thickness and the in-plane directions. The present results are compared with published data in some special cases to demonstrate the convergence and accuracy of the present algorithm. The investigations show that the variation of the material ingredients and properties, the boundary conditions, the thickness ratio of layers play significant roles on the bending, free vibration and buckling behaviors of bi-directional functionally graded sandwich plates.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
B. Sidda Reddy ◽  
J. Suresh Kumar ◽  
C. Eswara Reddy ◽  
K. Vijaya Kumar Reddy

The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs) using higher order shear deformation theory (HSDT) without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document