Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation

2016 ◽  
Vol 22 (1) ◽  
pp. 91-112 ◽  
Author(s):  
Merbouha Barka ◽  
Kouider Halim Benrahou ◽  
Ahmed Bakora ◽  
Abdelouahed Tounsi
1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


2012 ◽  
Vol 152-154 ◽  
pp. 474-479
Author(s):  
Feng Qun Zhao ◽  
Zhong Min Wang ◽  
Rui Ping Zhang

Based on the Kirchhoff large deformation theory, the post-buckling behavior of right movable simply supported FGM beam subjected to non-conservative forces and in-plane thermal loading was analyzed in this paper. The temperature-dependent and spatially dependent material properties of the FGM beam were assumed to vary through the thickness. The nonlinear governing equations of FGM beam subjected to a uniform distributed tangential load along the central axis and in-plane thermal loading were derived. Then, a shooting method and Runge-kutta method are employed to numerically solve the resulting equations. The post-buckling equilibrium paths of the FGM beam with different parameters were plotted, and the effects of non-conservative force, temperature, gradient index of FGM on the post-buckling behavior of right movable simply supported FGM beams were analyzed.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2200 ◽  
Author(s):  
Duc-Kien Thai ◽  
Tran Minh Tu ◽  
Le Kha Hoa ◽  
Dang Xuan Hung ◽  
Nguyen Ngọc Linh

: This paper analyzes the nonlinear buckling and post-buckling characteristics of the porous eccentrically stiffened functionally graded sandwich truncated conical shells resting on the Pasternak elastic foundation subjected to axial compressive loads. The core layer is made of a porous material (metal foam) characterized by a porosity coefficient which influences the physical properties of the shells in the form of a harmonic function in the shell’s thickness direction. The physical properties of the functionally graded (FG) coatings and stiffeners depend on the volume fractions of the constituents which play the role of the exponent in the exponential function of the thickness direction coordinate axis. The classical shell theory and the smeared stiffeners technique are applied to derive the governing equations taking the von Kármán geometrical nonlinearity into account. Based on the displacement approach, the explicit expressions of the critical buckling load and the post-buckling load-deflection curves for the sandwich truncated conical shells with simply supported edge conditions are obtained by applying the Galerkin method. The effects of material properties, core layer thickness, number of stiffeners, dimensional parameters, semi vertex angle and elastic foundation on buckling and post-buckling behaviors of the shell are investigated. The obtained results are validated by comparing with those in the literature.


Sign in / Sign up

Export Citation Format

Share Document