scholarly journals Accuracy of Single Plane X-Ray Image-Based Technique for Assessment of Knee Kinematics

2009 ◽  
Vol 4 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Koichi KOBAYASHI ◽  
Ken-ichi ODAGAWA ◽  
Makoto SAKAMOTO ◽  
Yuji TANABE
Keyword(s):  
Author(s):  
Ran Zhao ◽  
Hong Cai ◽  
Hua Tian ◽  
Ke Zhang

Abstract Purpose The application of the anatomical parameters of the contralateral hip joint to guide the preoperative template of the affected side relies on the bilateral hip symmetry. We investigated the bilateral hip symmetry and range of anatomical variations by measurement and comparison of bilateral hip anatomical parameters. Methods This study included 224 patients (448 hips) who were diagnosed with osteoarthritis (OA) and avascular necrosis (AVN) of the femur head, and underwent bilateral primary total hip arthroplasty (THA) in our hospital from January 2012 to August 2020. Imaging data included 224 patients X-ray and 30 CT data at the end of the cohort. Anatomical parameters, including the acetabular abduction angle and trochanteric height, were measured using the Noble method. Postoperative measurements included stem size, difference of leg length and offset. Results Except for the isthmus width, there were no significant differences in the anatomical morphology of the hip joint. Among the demographic factors, there was a correlation between body weight and NSA. Among various anatomical parameters, a correlation was present between medullary cavity widths of T + 20, T, and T − 20. The difference in the use of stem size is not due to the morphological difference of bilateral medullary cavity, but due to the different of 1- or 2-stage surgery. Conclusion Bilateral symmetry was present among the patients with normal morphology of the hip medullary cavity, theoretically confirming the feasibility of structural reconstruction of the hip joint using the hip joint on the uninjured side. Additionally, the difference in the morphology of the hip medullary cavity is not present in a single plane but is synergistically affected by multiple adjacent planes.


2018 ◽  
Vol 64 ◽  
pp. 198-204 ◽  
Author(s):  
Julien Clément ◽  
Panagiota Toliopoulos ◽  
Nicola Hagemeister ◽  
François Desmeules ◽  
Alexandre Fuentes ◽  
...  
Keyword(s):  

2005 ◽  
Vol 127 (4) ◽  
pp. 692-699 ◽  
Author(s):  
Benjamin J. Fregly ◽  
Haseeb A. Rahman ◽  
Scott A. Banks

Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to understand how knee kinematics influence joint injury, disease, and rehabilitation. Though recent studies have measured three-dimensional knee kinematics by matching geometric bone models to single-plane fluoroscopic images, factors limiting the accuracy of this approach have not been thoroughly investigated. This study used a three-step computational approach to evaluate theoretical accuracy limitations due to the shape matching process alone. First, cortical bone models of the femur, tibia/fibula, and patella were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic images were created by ray tracing the bone models in known poses. Finally, an automated matching algorithm utilizing edge detection methods was developed to align flat-shaded bone models to the synthetic images. Accuracy of the recovered pose parameters was assessed in terms of measurement bias and precision. Under these ideal conditions where other sources of error were eliminated, tibiofemoral poses were within 2mm for sagittal plane translations and 1.5deg for all rotations while patellofemoral poses were within 2mm and 3deg. However, statistically significant bias was found in most relative pose parameters. Bias disappeared and precision improved by a factor of two when the synthetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray tracing (i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed that the automated matching algorithm systematically pushed the flat-shaded bone models too far into the image plane to match the attenuated edges of the synthetic ray-traced images. These results suggest that biased edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape matching procedure.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5594
Author(s):  
Nilesh Kumar Jha ◽  
Maxim Lebedev ◽  
Stefan Iglauer ◽  
Jitendra S. Sangwai ◽  
Mohammad Sarmadivaleh

Wettability of surfaces remains of paramount importance for understanding various natural and artificial colloidal and interfacial phenomena at various length and time scales. One of the problems discussed in this work is the wettability alteration of a three-phase system comprising high salinity brine as the aqueous phase, Doddington sandstone as porous rock, and decane as the nonaqueous phase liquid. The study utilizes the technique of in situ contact angle measurements of the several 2D projections of the identified 3D oil phase droplets from the 3D images of the saturated sandstone miniature core plugs obtained by X-ray microcomputed tomography (micro-CT). Earlier works that utilize in situ contact angles measurements were carried out for a single plane. The saturated rock samples were scanned at initial saturation conditions and after aging for 21 days. This study at ambient conditions reveals that it is possible to change the initially intermediate water-wet conditions of the sandstone rock surface to a weakly water wetting state on aging by alkanes using induced polarization at the interface. The study adds to the understanding of initial wettability conditions as well as the oil migration process of the paraffinic oil-bearing sandstone reservoirs. Further, it complements the knowledge of the wettability alteration of the rock surface due to chemisorption, usually done by nonrepresentative technique of silanization of rock surface in experimental investigations.


1993 ◽  
Vol 48 (16) ◽  
pp. 11838-11845 ◽  
Author(s):  
M. Seelmann-Eggebert ◽  
R. Fasel ◽  
E. C. Larkins ◽  
J. Osterwalder

2011 ◽  
Vol 9 ◽  
pp. 135-138
Author(s):  
M. Rosenbaum ◽  
W. Sauer-Greff ◽  
R. Urbansky

Abstract. In food industry, most finished products are scanned by X-ray for contaminations. These X-ray machines continuously scan the product passing through. To minimize the required X-ray power, a Time, Delay and Integration (TDI) CCD sensor is used to capture the image. While the product moves across the sensor area, the angle of the X-rays changes during the pass. This can be compensated for by adjusting the sensor shift speed to focus on a single plane of the product. If the product has a significant thickness, the image will show artifacts due to the laminographic effect. In this contribution we demonstrate that by the use of inverse filtering images which are focused on planes of different height can be generated out of a single X-ray image.


Sign in / Sign up

Export Citation Format

Share Document