scholarly journals Interatomic Bonding Model with Polar Motifs Based on Point Group Theory for B2 and A2 Crystal Structures of Shape Memory Binary Alloys

2013 ◽  
Vol 7 (1) ◽  
pp. 1-10
Author(s):  
Mitsuo NOTOMI ◽  
Hironao GOMAE
2001 ◽  
Vol 322 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Olga Degtyareva ◽  
Wilfried B. Holzapfel

Open Physics ◽  
2003 ◽  
Vol 1 (1) ◽  
Author(s):  
Mihály Makai ◽  
Yuri Orechwa

AbstractThe state of technological systems, such as reactions in a confined volume, are usually monitored with sensors within as well as outside the volume. To achieve the level of precision required by regulators, these data often need to be supplemented with the solution to a mathematical model of the process. The present work addresses an observed, and until now unexplained, convergence problem in the iterative solution in the application of the finite element method to boundary value problems. We use point group theory to clarify the cause of the non-convergence, and give rule problems. We use the appropriate and consistent orders of approximation on the boundary and within the volume so as to avoid non-convergence.


1999 ◽  
Vol 19 (1-4) ◽  
pp. 311-316 ◽  
Author(s):  
Susan M. Tavender ◽  
Steven A. Johnson ◽  
Daniel Balsom ◽  
Anthony W. Parker ◽  
Roger H. Bisby

The carbonate radical (Co3−·) is of biological significance acting as an intermediate in free radical-mediated damage and is capable of oxidising amino acids and proteins. In order to distinguish between the four possible structures of Co3−·, nanosecond timeresolved resonance Raman (TR3) experiments were undertaken. Photolysis of persulphate at 250 nm generated the So4−· radical which then oxidised sodium carbonate. Resonance Raman spectra of the resulting Co3−· radical were obtained using a probe wavelength of 620 nm. Point group theory calculations and interpretation of the TR3 spectra suggest that the radical has C2v molecular symmetry.


Author(s):  
Ghaleb Alhakmi ◽  
Abderrazzak Assani ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

Two new orthophosphates, BaMn2Fe(PO4)3[barium dimanganese(II) iron(III) tris(orthophosphate)] and SrMn2Fe(PO4)3[strontium dimanganese(II) iron(III) tris(orthophosphate)], were synthesized by solid-state reactions. They are isotypic and crystallize in the orthorhombic system with space group typePbcn. Their crystal structures comprise infinite zigzag chains of edge-sharing FeO6octahedra (point group symmetry .2.) and Mn2O10double octahedra running parallel to [001], linked by two types of PO4tetrahedra. The so-formed three-dimensional framework delineates channels running along [001], in which the alkaline earth cations (site symmetry .2.) are located within a neighbourhood of eight O atoms.


2006 ◽  
Vol 37 (5) ◽  
pp. 1397-1403 ◽  
Author(s):  
D. Y. Cong ◽  
Y. D. Wang ◽  
X. Zhao ◽  
L. Zuo ◽  
R. Lin Peng ◽  
...  

1983 ◽  
Vol 21 ◽  
Author(s):  
C. M. Wayman

ABSTRACTInvestigations of the shape memory effect in alloys forming thermoelastic martensites with various crystal structures (2H, 3R, 9R and 18R) reveal that universal behavior exists. A unified explanation of the martensite deformation processes and subsequent shape recovery is now in hand, even though the various martensites are both internally twinned and internally faulted and, in addition, have different crystal structures. In cases studied to date, an initial parent phase single crystal transforms into self-accommodating arrangements of martensite variants (plates) which are characterized by “plate groups.” Each group consists of four variants. The average shape deformation in a plate group is essentially zero.Upon stressing below the Mf temperature the martensite undergoes deformation by detwinning (2H and 3R only), variant-variant coalescence and twinning processes, and further group-to-group coalescence. The deformed specimen eventually becomes a single crystal of martensite consisting of that particular habit plane variant whose shape deformation permits maximum extension in the direction of the applied stress. The deformed martensite persists after unloading has occurred; reverse rearrangements of twins and variants do not occur. Specimens deformed below Mf regain their initial shape characteristic of the initial parent phase upon heating from As to Af, during which the single crystal of martensite obtained by stressing the 24-variant configuration transforms back to the original parent phase single crystal in a unique manner, which is basically a simple “unshearing” process. The unshearing is the essence of the memory.The two-way shape memory effect results after the initial martensitic transformation upon cooling is preprogrammed by the introduction of stresses which preferentially bias the transformation so that only a single variant of martensite forms upon cooling. The shape change of this single variant causes the characteristic spontaneous “bending” upon cooling. The characteristic “unbending upon heating is as with the conventional “one-way” shape memory effect.


Sign in / Sign up

Export Citation Format

Share Document