scholarly journals Studies on the Convective Heat Transfer from a Rotating Disk : 6th Report, Experiment on the Laminar Mass Transfer from a Stepwise Discontinuous Naphthalene Disk Rotating in a Uniform Forced Stream

1972 ◽  
Vol 15 (84) ◽  
pp. 766-773 ◽  
Author(s):  
Ikuo MABUCHI ◽  
Yako KOTAKE ◽  
Toshio TANAKA
Author(s):  
Chadia Haidar ◽  
Rachid Boutarfa ◽  
Mohamed Sennoune ◽  
Souad Harmand

This work focuses on the numerical and experimental study of convective heat transfer in a rotor of a discoidal the machine with an eccentric impinging jet. Convective heat transfers are determined experimentally in steady state on the surface of a single rotating disk. The experimental technique is based on the use of infrared thermography to access surface temperature measurement, and on the numerical resolution of the energy equation in steady-state, to evaluate local convective coefficients. The results from the numerical simulation are compared with heat transfer experiments for rotational Reynolds numbers between 2.38×105 and 5.44×105 and for the jet's Reynolds numbers ranging from 16.5×103 to 49.6 ×103. A good agreement between the two approaches was obtained in the case of a single rotating disk, which confirms us in the choice of our numerical model. On the other hand, a numerical study of the flow and convective heat transfer in the case of an unconfined rotor-stator system with an eccentric air jet impinging and for a dimensionless spacing G=0.02, was carried out. The results obtained revealed the presence of different heat transfer zones dominated either by rotation only, by the air flow only or by the dynamics of the rotation flow superimposed on that of the air flow. Critical radii on the rotor surface have been identified


2012 ◽  
Vol 249-250 ◽  
pp. 443-451
Author(s):  
Jing Zhou Zhang ◽  
Xiao Ming Tan ◽  
Xing Dan Zhu

A three-dimensional numerical study on the flow and heat transfer characteristics over a rotating disk with bottom wall subjected to uniform heat flux was conducted with the use of RNG k- turbulent model. And some experiments were also made for validation. The effects of rotating angular speed and pin configuration on the temperature maps and convective heat transfer characte-ristics on rotating surface are analyzed. As the increase of rotating velocity, the impingement of pumping jet on the centre of rotating disk became stronger and the transition from laminar to turbu-lent occurred at the outer radius of rotating disk, which resulted in heat transfer enhancement. The pins on the disk made the pumping action of a rotating disk weaker. Simultaneously, they also acted as disturbing elements to the cyclone flow near the rotating disk surface, which made the overall heat transfer to be enhanced. Under the same extend areas of different pins, needle pin has higher convective heat transfer capacity than the discrete ring pin.


Sign in / Sign up

Export Citation Format

Share Document