scholarly journals On the Asymmetric Problem of Elasticity Theory for an Infinite Elastic Solid Containing Some Spherical Cavities : 1st Report-An Infinite Solid Containing Two Spherical Cavities

1976 ◽  
Vol 19 (135) ◽  
pp. 993-1000 ◽  
Author(s):  
Eiichiro TSUCHIDA ◽  
Ichiro NAKAHARA ◽  
Masao KODAMA
1966 ◽  
Vol 33 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Joseph F. Shelley ◽  
Yi-Yuan Yu

Presented in this paper is a solution in series form for the stresses in an infinite elastic solid which contains two rigid spherical inclusions of the same size. The stress field at infinity is assumed to be either hydrostatic tension or uniaxial tension in the direction of the common axis of the inclusions. The solution is based upon the Papkovich-Boussinesq displacement-function approach and makes use of the spherical dipolar harmonics developed by Sternberg and Sadowsky. The problem is closely related to, but turns out to be much more involved than, the corresponding problem of two spherical cavities solved by these authors.


2000 ◽  
Vol 80 (12) ◽  
pp. 2827-2840 ◽  
Author(s):  
J. W. Morris Jr, C. R. K Renn

1974 ◽  
Vol 41 (3) ◽  
pp. 647-651 ◽  
Author(s):  
Myron Levitsky ◽  
Bernard W. Shaffer

A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.


Sign in / Sign up

Export Citation Format

Share Document