scholarly journals The High-temperature Deformation of Metallic Materials with Ellipsoidal Second-phase Particles

1986 ◽  
Vol 29 (254) ◽  
pp. 2368-2375
Author(s):  
Manabu TANAKA ◽  
Hiroshi IIZUKA
2016 ◽  
Vol 838-839 ◽  
pp. 249-255 ◽  
Author(s):  
Tsutomu Ito ◽  
Kentaro Kawasaki ◽  
Takashi Mizuguchi

Class-I or Class-A solid solutions are substitutional with a relatively large difference in size between the solute and solvent atoms. High-temperature deformation of these solid solutions causes uniform transgranular deformation because of the solute drag motion of dislocations. Consequently, enhanced ductility can be obtained regardless of grain size. In our research, we specifically investigated the effects of second-phase particles resulting from adding impurity atoms on the hot ductility; i.e., how the second-phase particles obstruct the solute drag motion of dislocations. In this study, the effect of Mn and Cr impurities on the high-temperature ductility of typical Class-I Al−Mg solid solutions is investigated. The results show that hot ductility in the basic Al−Mg alloy leads to an elongation to fracture of above 200% at 673 and 723 K. We found that the dominant deformation mechanism causing high ductility is solute drag creep. The hot ductility decreases when Cr is added to the basic alloy, but an elongation to fracture of above 200% can still be achieved by adding Mn, although the elongation is less than that of the basic alloy.


2018 ◽  
Vol 941 ◽  
pp. 2319-2324
Author(s):  
Oscar A. Ruano ◽  
Fernando Carreño ◽  
Manuel Carsí

Ductility is the property of a given material to deform without fracture. In other words, is the capacity to maintain a structural stability under stresses. It is an important property that is difficult to predict since many microstructural and experimental factors play a role. A review of the most important approaches on ductility is given in this work with special emphasis in the high temperature deformation and the deformation mechanisms. The stability of materials is also analyzed and new concepts on the conditions for hot working are included. Stability maps are analyzed and conclusions on the various stability criteria are given on the base of magnesium alloys.


1995 ◽  
Vol 404 ◽  
Author(s):  
U. Messerschmidt ◽  
D. Baither ◽  
M. Bartsch ◽  
B. Baufeld ◽  
D. Häuβler ◽  
...  

AbstractA high-temperature straining stage was designed for the Halle HVEM. Electron bombardment is used to heat the specimen grips. At present the stage is operated at a maximum temperature of 1250 °C, but somewhat higher temperatures should also be possible. Details of the stage are described and results are presented on several materials. In yttria fully-stabilized (cubic) zirconia, the different slip behaviour on cube and octahedral planes is demonstrated at a specimen temperature of about 1150 °C. While the dislocations move very jerkily on the (primary) cube planes, their motion is more smooth on the octahedral planes suggesting the action of the Peierls mechanism. In t' zirconia, the switching of tetragonal domains was recorded during ferroelastic deformation. The same process was first observed for tetragonal precipitates in partially stabilized zirconia. In γ TiAl, at the temperature of the flow stress anomaly (about 650 °c), the so-called ordinary dislocations move in a viscous manner, in contrast to the room temperature behaviour, where glide seems to be controlled by localized obstacles. Over a wide temperature range in NiAl single crystals, moving dislocations show a discontinuous dependence of the curvature on the dislocation orientation, well agreeing with calculations of the line tension using anisotropic elasticity. Direct experimental proof of dislocation motion during plastic deformation of quasicrystals is first given for A1PdMn single quasicrystals. Dislocations smoothly move on planes orthogonal to threefold and fivefold directions.


2009 ◽  
Vol 83-86 ◽  
pp. 407-414 ◽  
Author(s):  
Mahmoud S. Soliman ◽  
Ehab El-Danaf ◽  
Abdulhakim A. Almajid

High-temperature deformation of an artificially aged 6082-Al alloy was conducted in the present investigation. Tensile tests were carried out at temperatures of 623, 673 and 723 K at various strain rates ranging from 5x10-5 to 2x10-2 s-1. The behavior of the alloy is characterized by high stress exponent, n and high apparent activation energy, Qa that are higher than what is usually observed in Al and Al solid-solution alloys under similar experimental conditions, which implies the presence of threshold stress; this behavior results from dislocation interaction with second phase particles. The threshold stress, σo values were seen to decrease exponentially with temperature. By incorporating the threshold stress in the analysis, the true activation energy, Qt was calculated to be close to that of dislocation pipe diffusion in Al. Analysis of the experimental data of the alloy in terms of the Zener- Hollomon parameter vs. normalized effective stress, revealed a single type of deformation behavior with an n value of ~7. Measurements showed that the values of elongation percent at failure increase with strain rate and temperature.


Author(s):  
Harry Schoeller ◽  
Shubhra Bansal ◽  
Aaron Knobloch ◽  
David Shaddock ◽  
Junghyun Cho

Lead-free solders have garnered much attention in recent years due to legislation banning the use of lead in electronics. As use of lead solders is phased out, there is a need for lead-free alternatives for niche applications such as high temperature environments where traditionally high lead solders are used. Electronics and sensors exposed to high-temperature environments such as those associated with deep well drilling require solder interconnects that can withstand high thermal-mechanical stresses. In an effort to characterize solder alloys for such applications, this study focuses on deformation behavior of the Sn95-Sb5 solder under high-temperature exposures (from 298°K to 473°K). As compared to conventional high-temperature Pb-based solder 90Pb–10Sn, Sn95–Sb5 exhibited very high tensile strength and modulus, as well as superior creep properties despite its lower melting temperature. Importantly, high-temperature deformation was shown to be influenced by the presence of the second phase (SnSb) distributed within the Sn-rich matrix. These second phase precipitates appeared to be dissolved into the Sn-rich phase above 453°K, which converted the solder into a single-phase alloy and resulted in a change in its deformation mechanism. Furthermore, as the service temperature is of such high homologous temperature (T > 0.5Tm), creep deformation will contribute significantly toward the life of the solder joint during thermal cycling. In order to characterize the creep behavior and to identify controlling mechanism(s), creep tests were carried out, from which the stress exponent and activation energy were determined. In this study, detailed microstructures under high-temperature are presented in conjunction with the corresponding mechanical behavior to further understand the controlling deformation mechanisms.


2008 ◽  
Vol 57 (6) ◽  
pp. 543-547
Author(s):  
Takuma WADA ◽  
Takahiro KAKEI ◽  
Hiroyuki HORII ◽  
Takeshi SHIONO ◽  
Yasunori OKAMOTO

Sign in / Sign up

Export Citation Format

Share Document