scholarly journals Flame Stability Limit and Exhaust Emissions of Low Calorific Fuel Combustion in Turbulent Diffusion Combustor for a Small-Scale Fuel Cell

2004 ◽  
Vol 47 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Hidenori KOSEKI
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
A. De Pascale ◽  
F. Melino ◽  
A. Peretto ◽  
...  

The penetration of renewable sources, particularly wind and solar, into the grid has been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid integrity, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on photovoltaic energy system, energy storage is needed with the purpose of ensuring continuous power flow to minimize or to neglect electrical grid supply. A comprehensive study on a hybrid micro-CHP system based on photovoltaic panels using hydrogen as energy storage technologies has been performed. This study examines the feasibility of replacing electricity provided by the grid with a hybrid system to meet household demand. This paper is a part of an experimental and a theoretical study which is currently under development at University of Bologna where a test facility is under construction for the experimental characterization of a small scale cogenerative power system. This paper presents the theoretical results of a hybrid system performance simulations made of a photovoltaic array an electrolyzer with a H2 tank and a Proton Exchange Membrane fuel cell stack designed to satisfy typical household electrical demand. The performance of this system have been evaluated by the use of a calculation code, in-house developed by the University of Bologna. Results of the carried out parametric investigations identify photovoltaic and fuel cell systems’ optimal size in order to minimize the purchasing of electrical energy from the grid. Future activities will be the tuning of the software with the experimental results, in order to realize a code able to define the correct size of each sub-system, once the load profile of the utility is known or estimated.


This chapter consists of two sections, ‘Analysis of a Fuel Cell Microgrid with a Small-Scale Wind Turbine Generator’ and ‘Power Characteristics of a Fuel Cell Microgrid with Wind Power Generation.’ An independent microgrid is expected to be effective in cutting greenhouse gas discharge and energy costs. Therefore, the operating conditions of an independent microgrid that supplies power with renewable power sources and fuel cells are investigated in the 1st section. In the 2nd section, the dynamic characteristics of fuel cell microgrid are investigated in numerical analysis, and the cost of fuel consumption and efficiency is also calculated. In addition, the stabilization time of the microgrid and its dynamic characteristics accompanied by wind-power-generation and fluctuation of the power load are clarified.


2019 ◽  
Vol 9 (24) ◽  
pp. 5450
Author(s):  
Alexandros Arsalis ◽  
George E. Georghiou

A small-scale, decentralized hybrid system is proposed for autonomous operation in a commercial building (small hotel). The study attempts to provide a potential solution, which will be attractive both in terms of efficiency and economics. The proposed configuration consists of the photovoltaic (PV) and solid oxide fuel cell (SOFC) subsystems. The fuel cell subsystem is fueled with natural gas. The SOFC stack model is validated using literature data. A thermoeconomic optimization strategy, based on a genetic algorithm approach, is applied to the developed model to minimize the system lifecycle cost (LCC). Four decision variables are identified and chosen for the thermoeconomic optimization: temperature at anode inlet, temperature at cathode inlet, temperature at combustor exit, and steam-to-carbon ratio. The total capacity at design conditions is 70 and 137.5 kWe, for the PV and SOFC subsystems, respectively. After the application of the optimization process, the LCC is reduced from 1,203,266 to 1,049,984 USD. This improvement is due to the reduction of fuel consumed by the system, which also results in an increase of the average net electrical efficiency from 29.2 to 35.4%. The thermoeconomic optimization of the system increases its future viability and energy market penetration potential.


Sign in / Sign up

Export Citation Format

Share Document