Numerical simulation for blood flow arterial wall interaction problems in the circulatory system

2003 ◽  
Vol 2003.16 (0) ◽  
pp. 31-32
Author(s):  
Marie OSHIMA ◽  
Ryo TORII
Author(s):  
Shigefumi Tokuda ◽  
Takeshi Unemura ◽  
Marie Oshima

Cerebrovascular disorder such as subarachnoid hemorrhage (SAH) is 3rd position of the cause of death in Japan [1]. Its initiation and growth are reported to depend on hemodynamic factors, particularly on wall shear stress or blood pressure induced by blood flow. In order to investigate the information on the hemodynamic quantities in the cerebral vascular system, the authors have been developing a computational tool using patient-specific modeling and numerical simulation [2]. In order to achieve an in vivo simulation of living organisms, it is important to apply appropriate physiological conditions such as physical properties, models, and boundary conditions. Generally, the numerical simulation using a patient-specific model is conducted for a localized region near the research target. Although the analysis region is only a part of the circulatory system, the simulation has to include the effects from the entire circulatory system. Many studies have carried out to derive the boundary conditions to model in vivo environment [3–5]. However, it is not easy to obtain the biological data of cerebral arteries due to head capsule.


2007 ◽  
Vol 55 (S 1) ◽  
Author(s):  
W Schiller ◽  
K Spiegel ◽  
T Schmid ◽  
H Rudorf ◽  
S Flacke ◽  
...  

1992 ◽  
Vol 114 (3) ◽  
pp. 274-282 ◽  
Author(s):  
R. M. Nerem

Atherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the United States and in most of the western world. Severe atherosclerosis interferes with blood flow; however, even in the early stages of the disease, i.e. during atherogenesis, there is believed to be an important relationship between the disease processes and the characteristics of the blood flow in the arteries. Atherogenesis involves complex cascades of interactions among many factors. Included in this are fluid mechanical factors which are believed to be a cause of the highly focal nature of the disease. From in vivo studies, there is evidence of hemodynamic influences on the endothelium, on intimal thickening, and on monocyte recruitment. In addition, cell culture studies have demonstrated the important effect of a cell’s mechanical environment on structure and function. Most of this evidence is for the endothelial cell, which is believed to be a key mediator of any hemodynamic effect, and it is now well documented that cultured endothelial monolayers, in response to a fluid flow-imposed laminar shear stress, undergo a variety of changes in structure and function. In spite of the progress in recent years, there are many areas in which further work will provide important new information. One of these is in the engineering of the cell culture environment so as to make it more physiologic. Animal studies also are essential in our efforts to understand atherogenesis, and it is clear that we need better information on the pattern of the disease and its temporal development in humans and animal models, as well as the specific underlying biologic events. Complementary to this will be in vitro model studies of arterial fluid mechanics. In addition, one can foresee an increasing role for computer modelling in our efforts to understand the pathophysiology of the atherogenic process. This includes not only computational fluid mechanics, but also modelling the pathobiologic processes taking place within the arterial wall. A key to the atherogenic process may reside in understanding how hemodynamics influences not only intimal smooth muscle cell proliferation, but also the recruitment of the monocyte/macrophage and the formation of foam cells. Finally, it will be necessary to begin to integrate our knowledge of cellular phenomena into a description of the biologic processes within the arterial wall and then to integrate this into a picture of the disease process itself.


2012 ◽  
Vol 591-593 ◽  
pp. 1734-1738
Author(s):  
Chun Yan Huang ◽  
Fan Jiang

In order to study the influence of pulsating blood flow to robot and blood vessel, UDF programming of the inlet velocity is defined as the boundary condition, and the model simulate the turbulent blood flow. Moreover, in this situation, this paper analyzes the influence caused by blood parameters for the biggest surface pressure on robot. The results are showed that the variation of pressure and velocity is different on different position at 0.08s and 0.27s, and the surface pressure of the robot become greater by the increase of blood density or viscosity.


Sign in / Sign up

Export Citation Format

Share Document