Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis

1992 ◽  
Vol 114 (3) ◽  
pp. 274-282 ◽  
Author(s):  
R. M. Nerem

Atherosclerosis, a disease of large- and medium-size arteries, is the chief cause of death in the United States and in most of the western world. Severe atherosclerosis interferes with blood flow; however, even in the early stages of the disease, i.e. during atherogenesis, there is believed to be an important relationship between the disease processes and the characteristics of the blood flow in the arteries. Atherogenesis involves complex cascades of interactions among many factors. Included in this are fluid mechanical factors which are believed to be a cause of the highly focal nature of the disease. From in vivo studies, there is evidence of hemodynamic influences on the endothelium, on intimal thickening, and on monocyte recruitment. In addition, cell culture studies have demonstrated the important effect of a cell’s mechanical environment on structure and function. Most of this evidence is for the endothelial cell, which is believed to be a key mediator of any hemodynamic effect, and it is now well documented that cultured endothelial monolayers, in response to a fluid flow-imposed laminar shear stress, undergo a variety of changes in structure and function. In spite of the progress in recent years, there are many areas in which further work will provide important new information. One of these is in the engineering of the cell culture environment so as to make it more physiologic. Animal studies also are essential in our efforts to understand atherogenesis, and it is clear that we need better information on the pattern of the disease and its temporal development in humans and animal models, as well as the specific underlying biologic events. Complementary to this will be in vitro model studies of arterial fluid mechanics. In addition, one can foresee an increasing role for computer modelling in our efforts to understand the pathophysiology of the atherogenic process. This includes not only computational fluid mechanics, but also modelling the pathobiologic processes taking place within the arterial wall. A key to the atherogenic process may reside in understanding how hemodynamics influences not only intimal smooth muscle cell proliferation, but also the recruitment of the monocyte/macrophage and the formation of foam cells. Finally, it will be necessary to begin to integrate our knowledge of cellular phenomena into a description of the biologic processes within the arterial wall and then to integrate this into a picture of the disease process itself.

Proteins are an integral part of molecular and cellular structure and function and are probably the most purified type of biological molecule. In order to elucidate the structure and function of any protein it is first necessary to purify it. Protein purification techniques have evolved over the past ten years with improvements in equipment control, automation, and separation materials, and the introduction of new techniques such as affinity membranes and expanded beds. These developments have reduced the workload involved in protein purification, but there is still a need to consider how unit operations linked together to form a purification strategy, which can be scaled up if necessary. The two Practical Approach books on protein purification have therefore been thoroughly updated and rewritten where necessary. The core of both books is the provision of detailed practical guidelines aimed particularly at laboratory scale purification. Information on scale-up considerations is given where appropriate. The books are not comprehensive but do cover the major laboratory techniques and common sources of protein. Protein Purification Techniques focuses on unit operations and analytical techniques. It starts with an overview of purification strategy and then covers initial extraction and clarification techniques. The rest of the book concentrates on different purification methods with the emphasis being on chromatography. The final chapter considers general scale-up considerations. Protein Purification Applications describes purification strategies from common sources: mammalian cell culture, microbial cell culture, milk, animal tissue, and plant tissue. It also includes chapters on purification of inclusion bodies, fusion proteins, and purification for crystallography. A purification strategy that can produce a highly pure single protein from a crude mixture of proteins, carbohydrates, lipids, and cell debris to is a work of art to be admired. These books (available individually or as a set)are designed to give the laboratory worker the information needed to undertake the challenge of designing such a strategy.


1998 ◽  
Vol 79 (05) ◽  
pp. 1034-1040 ◽  
Author(s):  
E. Nitschmann ◽  
L. Berry ◽  
S. Bridge ◽  
M. W. C. Hatton ◽  
M. Richardson ◽  
...  

SummaryWe hypothesised that there are important physiologic differences in arterial wall structure and function with respect to antithrombotic activity in the very young (pre-puberty) compared to adults. Electron microscopy, gel electrophoresis, and activity assays were used to examine differences in aorta structure and function comparing prepubertal rabbits (pups) to adult rabbits. Differences in endothelial function, extracellular matrix structure, proteoglycan (PG) distribution and glycosaminoglycan (GAG) content and function were shown. In both intima and media, total PG, chondroitin sulfate (CS) PG and heparan sulfate (HS) PG content were significantly increased in pups compared to adult rabbits. These findings corresponded to increased concentrations by mass analyses of CS GAG and DS GAG in aortas from pups. There was also a significant increase in antithrombin activity in pups due to HS GAG. In conclusion, differences in both structure and antithrombin activity of aortas from pups compared to adult rabbits suggest that young arteries may have greater antithrombotic potential that is, at least in part, related to increased HS GAG.


1994 ◽  
Vol 267 (1) ◽  
pp. R124-R135 ◽  
Author(s):  
J. B. Michel ◽  
D. Heudes ◽  
O. Michel ◽  
P. Poitevin ◽  
M. Philippe ◽  
...  

The consequences of hypertension and aging on cardiovascular structure and function are reputed to be similar, suggesting that blood pressure plays a role in the aging process. However, the exact relationship between aging, blood pressure, and the arterial structure-function relationship has not been demonstrated. To test the effects of aging, renin-angiotensin system, and pressure on the arterial wall, 20 normotensive male WAG/Rij rats were killed at 6, 12, 24, and 30 mo of age and compared with similar groups treated with an angiotensin (ANG)-converting enzyme inhibitor (ACEI), perindopril. Arterial function was determined by a systemic hemodynamic study and by in situ measurement of carotid compliance. Arterial wall structure was determined by histomorphometric and biochemical methods. Aging did not significantly modify blood pressure, but ACE inhibition decreased blood pressure significantly from 6 to 30 mo. Plasma renin activity decreased with age and increased with ACEI. Plasma atrial natriuretic factor increased with age and was significantly decreased with ACEI. Absolute and relative left ventricular weight increased with age, and ACEI delayed these increases. Arterial wall stiffness increased with age, as shown by a significant decrease in systemic and local arterial compliance and by an increase in aortic characteristic impedance. The increase in carotid wall compliance after poisoning of smooth muscle contractile function (KCN) was greater in young (6- and 12-mo old) than in old (24- and 30-mo old) rats. Chronic ACEI treatment increased basal carotid compliance values slightly and did not change KCN carotid compliance. The aortic and carotid luminal size increased regularly with age. Aging was associated without any change in absolute elastin content. In contrast, collagen content increased with aging. Aging was also associated with an increase in medial thickness. Medial thickening was mainly due to smooth muscle hypertrophy. Aging was associated with intimal proliferation, which became progressively thicker and collagen rich. ACEI treatment did not prevent aortic lumen enlargement but significantly postponed the increase in medial and intimal thickening. Biochemical determinations of the aortic wall components confirmed the morphometric data. In conclusion, the age-dependent large artery enlargement and stiffening were observed both in normotensive rats and in those rats whose blood pressure was lowered by ACEI. This suggests that aging and blood pressure affect arterial wall structure and function by different mechanisms.


2003 ◽  
Vol 16 (2) ◽  
pp. 242-264 ◽  
Author(s):  
Kelly J. Henrickson

SUMMARY Human parainfluenza viruses (HPIV) were first discovered in the late 1950s. Over the last decade, considerable knowledge about their molecular structure and function has been accumulated. This has led to significant changes in both the nomenclature and taxonomic relationships of these viruses. HPIV is genetically and antigenically divided into types 1 to 4. Further major subtypes of HPIV-4 (A and B) and subgroups/genotypes of HPIV-1 and HPIV-3 have been described. HPIV-1 to HPIV-3 are major causes of lower respiratory infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. Each subtype can cause somewhat unique clinical diseases in different hosts. HPIV are enveloped and of medium size (150 to 250 nm), and their RNA genome is in the negative sense. These viruses belong to the Paramyxoviridae family, one of the largest and most rapidly growing groups of viruses causing significant human and veterinary disease. HPIV are closely related to recently discovered megamyxoviruses (Hendra and Nipah viruses) and metapneumovirus.


2015 ◽  
Vol 11 (4) ◽  
pp. 330-343
Author(s):  
Donald R. Dengel ◽  
Justin R. Ryder

Until recently cardiovascular disease is often thought of as a disease that manifests itself during middle age. Researchers and clinicians have begun to realize that the initial signs of cardiovascular disease begin early on in childhood with changes present in both vascular structure and function. This increased recognition has resulted in considerable effort to develop accurate and reliable methods to measure as well as track changes in vascular structure and function applicable to study this process in children and adolescents. Certain genetic abnormalities and chronic diseases, which present or emerge in childhood often result in meaningful changes to vascular structure and function, which aid in our understanding of the vascular disease process. In this review, we will discuss different methods of assessing vascular structure and function, the diseases in childhood associated with decrements and maladaptive changes in the vascular system, and whether modification of lifestyle (ie, weight loss, dietary and/or exercise changes) can affect vascular structure and function in children.


2011 ◽  
Vol 110 (5) ◽  
pp. 1190-1195 ◽  
Author(s):  
Nicola J. Rowley ◽  
Ellen A. Dawson ◽  
Gurpreet K. Birk ◽  
N. Timothy Cable ◽  
Keith George ◽  
...  

Previous studies have established effects of exercise training on arterial wall thickness, remodeling, and function in humans, but the extent to which these changes are locally or systemically mediated is unclear. We examined the brachial arteries of the dominant (D) and nondominant (ND) upper limbs of elite racquet sportsmen and compared them to those of matched healthy inactive controls. Carotid and superficial femoral artery responses were also assessed in both groups. High-resolution duplex ultrasound was used to examine resting diameter, wall thickness, peak diameter, and blood flow. We found larger resting arterial diameter in the preferred arm of the athletes (4.9 ± 0.5 mm) relative to their nonpreferred arm (4.3 ± 0.4 mm, P < 0.05) and both arms of control subjects (D: 4.1 ± 0.4 mm; ND: 4.0 ± 0.4, P < 0.05). Similar limb-specific differences were also evident in brachial artery dilator capacity (5.5 ± 0.5 vs. 4.8 ± 0.4, 4.8 ± 0.6, and 4.8 ± 0.6 mm, respectively; P < 0.05) following glyceryl trinitrate administration and peak blood flow (1,118 ± 326 vs. 732 ± 320, 737 ± 219, and 698 ± 174 ml/min, respectively; P < 0.05) following ischemic handgrip exercise. In contrast, athletes demonstrated consistently lower wall thickness in carotid (509 ± 55 μm), brachial (D: 239 ± 100 μm; ND: 234 ± 133 μm), and femoral (D: 479 ± 38 μm; ND: 479 ± 42 μm) arteries compared with control subjects (carotid: 618 ± 74 μm; brachial D: 516 ± 100 μm; ND: 539 ± 129 μm; femoral D: 634 ± 155 μm; ND: 589 ± 112 μm; all P < 0.05 vs. athletes), with no differences between the limbs of either group. These data suggest that localized effects of exercise are evident in the remodeling of arterial size, whereas arterial wall thickness appears to be affected by systemic factors.


2013 ◽  
Vol 101 (12) ◽  
pp. 3520-3530 ◽  
Author(s):  
Jangho Kim ◽  
Kyoung Soon Choi ◽  
Yeonju Kim ◽  
Ki-Tack Lim ◽  
Hoon Seonwoo ◽  
...  

Author(s):  
Dr Mark Harrison

1.1 Homeostasis, 224 1.2 Compartments and fluid spaces in health, 225 1.3 Key aspects of cell structure and function, 227 1.4 Vessel fluid dynamics, 230 1.5 Blood and blood flow, 232 1.6 Basis of the neurological action potential, 234 1.7 Conduction of the generated action potential, ...


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2453
Author(s):  
Gary A. Cuthbert ◽  
Faheem Shaik ◽  
Michael A. Harrison ◽  
Sreenivasan Ponnambalam ◽  
Shervanthi Homer-Vanniasinkam

The process of atherosclerosis leads to the formation of plaques in the arterial wall, resulting in a decreased blood supply to tissues and organs and its sequelae: morbidity and mortality. A class of membrane-bound proteins termed scavenger receptors (SRs) are closely linked to the initiation and progression of atherosclerosis. Increasing interest in understanding SR structure and function has led to the idea that these proteins could provide new routes for cardiovascular disease diagnosis, management, and treatment. In this review, we consider the main classes of SRs that are implicated in arterial disease. We consider how our understanding of SR-mediated recognition of diverse ligands, including modified lipid particles, lipids, and carbohydrates, has enabled us to better target SR-linked functionality in disease. We also link clinical studies on vascular disease to our current understanding of SR biology and highlight potential areas that are relevant to cardiovascular disease management and therapy.


Sign in / Sign up

Export Citation Format

Share Document