1907 Influence of time integration method and coupled algorithm on numerical instability for coupled finite element analysis

2007 ◽  
Vol 2007.20 (0) ◽  
pp. 117-118
Author(s):  
Tomoya NIHO ◽  
Tomoyoshi HORIE
2014 ◽  
Vol 1025-1026 ◽  
pp. 955-958 ◽  
Author(s):  
Jun Jie Shi ◽  
Ya Nan Li ◽  
Li Qin

The theoretical study of galloping can effectively promote anti-galloping techniques. Cable element is utilized to imitate the bundled conductor, and beam elements are used to simulated the spacers, established galloping finite element analysis model which can consider sub-conductors wake interference. The finite element equation was solved by time integration method and the calculation program was compiled by MATLAB. Through numerical simulation analysis, compared the dancing in the case of considering the effect of the sub-conductor wake and ignoring the effect of the sub-conductor wake. The results showed that considering the effect of the wake on aerodynamic loads has a greater vertical vibration amplitude. This method can provide reference for the study of prevention technology on dancing.


1990 ◽  
Vol 57 (3) ◽  
pp. 553-561 ◽  
Author(s):  
I. Nishiguchi ◽  
T.-L. Sham ◽  
E. Krempl

A one-step time integration method is developed for the finite deformation theory of viscoplasticity based on overstress (FVBO) described in Part I. This time integration method is based on a forward gradient approximation and it leads to explicit expressions of the tangent operators suitable for finite element implementation. Numerical experiments and closed-form solutions for a hypoelastic material in homogeneous deformation states are presented. The FVBO is applied to the modeling of second-order effects in torsion. The numerical results show that a modification of the Jaumann rate and second-order terms of the inelastic rate of deformation are necessary to model the observed effects.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jinyue Zhang ◽  
Lei Shi ◽  
Tianhao Liu ◽  
De Zhou ◽  
Weibin Wen

In this work, a study of a three substeps’ implicit time integration method called the Wen method for nonlinear finite element analysis is conducted. The calculation procedure of the Wen method for nonlinear analysis is proposed. The basic algorithmic property analysis shows that the Wen method has good performance on numerical dissipation, amplitude decay, and period elongation. Three nonlinear dynamic problems are analyzed by the Wen method and other competitive methods. The result comparison indicates that the Wen method is feasible and efficient in the calculation of nonlinear dynamic problems. Theoretical analysis and numerical simulation illustrate that the Wen method has desirable solution accuracy and can be a good candidate for nonlinear dynamic problems.


Author(s):  
Shyjo Johnson ◽  
T. Jeyapoovan

An element edge method is developed for the evaluation of stiffness matrix for the 8-node brick element. Handling of large data leads to take more computational time in finite element analysis. The new set of quadrature consist of 13 sampling points and weights out which 12 points are at the edges of the brick element and one point is considered at the center of the element. The new set of sampling points is a mimic of Gauss numerical integration method. Finally, the proposed element edge method is evaluated using the standard benchmarked problems and compared the results with conventional Gauss integration method and found that CPU execution time for the evaluation of finite element problems are found to be reduced considerably without compromising in the results mainly consist of accuracy of values and convergence rate.


Sign in / Sign up

Export Citation Format

Share Document