305 Numerical Simulation of Water Wave by THINC Scheme

2009 ◽  
Vol 2009.22 (0) ◽  
pp. 492-493
Author(s):  
Changhong HU
1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


Author(s):  
Jonas Steigerwald ◽  
Jonathan Reutzsch ◽  
Matthias Ibach ◽  
Martina Baggio ◽  
Adrian Seck ◽  
...  

2009 ◽  
Vol 637 ◽  
pp. 443-473 ◽  
Author(s):  
ASHISH RAVAL ◽  
XIANYUN WEN ◽  
MICHAEL H. SMITH

A numerical simulation is performed to study the velocity, streamlines, vorticity and shear stress distributions in viscous water waves with different wave steepness in intermediate and deep water depth when the average wind velocity is zero. The numerical results present evidence of ‘clockwise’ and ‘anticlockwise’ rotation of the fluid at the trough and crest of the water waves. These results show thicker vorticity layers near the surface of water wave than that predicted by the theories of inviscid rotational flow and the low Reynolds number viscous flow. Moreover, the magnitude of vorticity near the free surface is much larger than that predicted by these theories. The analysis of the shear stress under water waves show a thick shear layer near the water surface where large shear stress exists. Negative and positive shear stresses are observed near the surface below the crest and trough of the waves, while the maximum positive shear stress is inside the water and below the crest of the water wave. Comparison of wave energy decay rate in intermediate depth and deep water waves with laboratory and theoretical results are also presented.


Water SA ◽  
2020 ◽  
Vol 46 (4 October) ◽  
Author(s):  
Marzieh Fadaee ◽  
Mohammad Zounemat-Kermani

In this research, experimental and numerical modelling of three-phase air, water, and sediment transport flow, due to the opening of a sluice gate was conducted in two scenarios, i.e., with and without a triangular obstacle. Numerical simulation was conducted using the Navier-Stokes equations with the aid of the volume of fluid method (VOF) to track the free surface of the fluid. For the experimental model, a glass-enclosed flume with 150 × 30 × 50 cm dimensions was used. The experiment was performed for an initial height of the water column at 20 cm and 10 cm sediment column. To evaluate the numerical model's performance, the simulation results were compared with the experimental observations using the average relative error %. The amount of relative error between experimental observations and numerical simulations, for the position and height of the wave flow for the three-phase air, water, and sediment flow, were obtained as 2.64% and 4.51% for the position and height of the water wave, and 2.23% and 2.82% for the position and height of the sediment transport, respectively, for the ‘without obstacle’ scenario, and 3.77% and 5.25% for the position and height of the water wave, and 2% and 7.23% for the position and height of the sediment transport, respectively, for the ‘with obstacle’ scenario. The findings of the study indicate the appropriate performance of the numerical model in the simulation of water and sediment wavefront advance, and also its weakness in the estimation of wave height.


2012 ◽  
Vol 212-213 ◽  
pp. 104-107
Author(s):  
Hui Deng ◽  
Zhi Hong Zhang ◽  
Tao Miao ◽  
Jian Nong Gu

Based on the theory of shallow-water wave, the theoretical model was established for calculating wash wave caused by ship moving at subcritical and supercritical speed. Wave elevation and pressure variation were obtained by numerical simulation, and their features were analyzed. A measuring system of wash wave and pressure variation was developed, and wave elevation and pressure variation induced by a towed ship model were measured. A good agreement existed between the calculated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document