1406 Evaluation of Microstructural Morphology Dependent Deformation Behavior of Dual-Phase Steel using Crystal Plasticity Finite Element and Multi-Phase-Field Methods

2013 ◽  
Vol 2013.26 (0) ◽  
pp. _1406-1_-_1406-2_
Author(s):  
Keisuke HASHIMOTO ◽  
Akinori YAMANAKA
2015 ◽  
Vol 651-653 ◽  
pp. 570-574 ◽  
Author(s):  
Akinori Yamanaka

The plastic deformation behavior of dual-phase (DP) steel is strongly affected by its underlying three-dimensional (3D) microstructural factors such as spatial distribution and morphology of ferrite and martensite phases. In this paper, we present a coupled simulation method by the multi-phase-field (MPF) model and the crystal plasticity fast Fourier transformation (CPFFT) model to investigate the 3D microstructure-dependent plastic deformation behavior of DP steel. The MPF model is employed to generate a 3D digital image of DP microstructure, which is utilized to create a 3D representative volume element (RVE). Furthermore, the CPFFT simulation of tensile deformation of DP steel is performed using the 3D RVE. Through the simulations, we demonstrate the stress and strain partitioning behaviors in DP steel depending on the 3D morphology of DP microstructure can be investigated consistently.


2013 ◽  
Vol 7 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Akinori Yamanaka ◽  
◽  
Tomohiro Takaki ◽  

A coupled simulation method is developed by using a Multi-Phase-Field (MPF) method that is recognized as a powerful numerical method for simulating microstructure formation in material and ElastoPlastic Finite Element Analysis (EP-FEA) based on a homogenization method. We apply the developed simulation method to investigate the deformation behavior of DP steel that includes various volume fractions and morphologies of the ferrite (α) phase. To obtain morphological information on the α phase of DP steel, we performed MPF simulation of austenite-to-ferrite (γ → α) transformation during continuous cooling transformation. MPF simulation gives us the digital image of the distribution of the simulated α phase. Furthermore, we model the representative volume element, which describes the DP microstructure, on the basis of the obtained morphology of the α phase, and perform tension-compression testing of DP steel, including the simulated α phase. Through these simulations, it is confirmed that the developed simulation method enables us to clarify the effect of the volume fraction and the configuration of the α phase on macroscopic deformation behavior of DP steel, such as the Bauschinger effect.


2019 ◽  
Vol 9 (12) ◽  
pp. 2436 ◽  
Author(s):  
Adrian Egger ◽  
Udit Pillai ◽  
Konstantinos Agathos ◽  
Emmanouil Kakouris ◽  
Eleni Chatzi ◽  
...  

Three alternative approaches, namely the extended/generalized finite element method (XFEM/GFEM), the scaled boundary finite element method (SBFEM) and phase field methods, are surveyed and compared in the context of linear elastic fracture mechanics (LEFM). The purpose of the study is to provide a critical literature review, emphasizing on the mathematical, conceptual and implementation particularities that lead to the specific advantages and disadvantages of each method, as well as to offer numerical examples that help illustrate these features.


Sign in / Sign up

Export Citation Format

Share Document