Ductile and Brittle Fracture Simulation Combined with Cohesive Zone Model and Gurson Model Depending on Temperature

2018 ◽  
Vol 2018.31 (0) ◽  
pp. 183
Author(s):  
Takuya KAGIMURA ◽  
Yuichi SHINTAKU
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 749 ◽  
Author(s):  
Dong Li ◽  
Demin Wei

In this paper, rate-dependent cohesive zone model was established to numerical simulate the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in architecture and automobile industry due to its transparency. To improve the accuracy of fracture simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was also taken account. The rate-dependent cohesive zone model was implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh size of glass plate and the impact velocity on the fracture characteristics were studied.


2016 ◽  
Vol 27 (1) ◽  
pp. 138-175 ◽  
Author(s):  
Nicolás A Labanda ◽  
Sebastián M Giusti ◽  
Bibiana M Luccioni

A cohesive zone model implemented in an augmented Lagrangian functional is used for simulation of meso-scale fracture problems in this paper. The method originally developed by Lorentz is first presented in a rigorous variational framework. The equivalence between the stationary point of the one-field problem and the saddle point of the mixed formulation is proved by solving the double inequality of the mixed functional. An adaptation to simulate fracture phenomena in the meso-scale via mesh modification is also presented as an algorithm to insert zero-thickness interface elements based on Lagrange multipliers, boarding the non-trivial task of the field interpolation for different crack paths (plain and tortuous). A suitable tool to study the matrix fracture and debonding phenomena in composites with strongly different component stiffnesses that avoids ill-conditioning matrices associated with intrinsic cohesive zone models is obtained. The method stability is discussed using a simple patch test. Some numerical applications to fracture problems taking into account the mesostructure and, particularly, the study of transverse failure of longitudinal fiber reinforced epoxy and the fracture in concrete specimens are included in the paper. Comparing the numerical results with the experimental results obtained by other researchers, the paper introduces a discussion about the influence of coarse aggregate volume in meso-scale fracture mechanisms in concrete L-shaped specimens.


2013 ◽  
Vol 266 ◽  
pp. 144-161 ◽  
Author(s):  
Rodrigo Espinha ◽  
Kyoungsoo Park ◽  
Glaucio H. Paulino ◽  
Waldemar Celes

2013 ◽  
Vol 10 (03) ◽  
pp. 1350007 ◽  
Author(s):  
N. SAGARESAN

A simplified meshless methods for brittle fracture and nonlinear material is presented. In this method, the crack is modeled by a set of discrete crack segments crossing the entire domain of influence of the meshless shape functions. The key advantage of this method is its simplicity since no representation of the crack topology is needed. A nonlocal stress tensor around the crack tip is used as fracture criterion. A neo-Hooke material in the bulk material is used and a cohesive zone model is employed once discrete cracks occur. We also present consistent linearization of the cohesive zone model. The method is applied to fracture modeling in concrete that is accompanied by excessive cracking and therefore methods that represent the crack path have major drawbacks. We demonstrate the accuracy of the proposed method for complex problems involving mode-I and mixed mode failure.


Sign in / Sign up

Export Citation Format

Share Document