411 Study on numerical simulation of tension leveling of thick plate for optimum process design

2010 ◽  
Vol 2010.48 (0) ◽  
pp. 117-118
Author(s):  
Tomomi KAWASUMI ◽  
Ryutaro HINO ◽  
Fusahito YOSHIDA ◽  
Vassili V. TOROPOV
1998 ◽  
Vol 80-81 ◽  
pp. 635-641 ◽  
Author(s):  
Tomiso Ohata ◽  
Yasunori Nakamura ◽  
Tsutao Katayama ◽  
Eiji Nakamachi ◽  
Nobuaki Omori

1996 ◽  
Vol 60 (1-4) ◽  
pp. 543-548 ◽  
Author(s):  
T. Ohata ◽  
Y. Nakamura ◽  
T. Katayama ◽  
E. Nakamachi ◽  
K. Nakano

2012 ◽  
Vol 26 (6) ◽  
pp. 441-447 ◽  
Author(s):  
Shinichi Tashiro ◽  
Manabu Tanaka ◽  
Tomoyuki Ueyama ◽  
Tetsuo Era

2009 ◽  
Vol 50 (579) ◽  
pp. 343-348 ◽  
Author(s):  
Hideki KAKIMOTO ◽  
Takefumi ARIKAWA ◽  
Yoichi TAKAHASHI ◽  
Tatsuya TANAKA ◽  
Yutaka IMAIDA

2013 ◽  
Author(s):  
Hu Yong ◽  
◽  
Xiang Yong ◽  
Zheng Beijia ◽  
Zhang Yi ◽  
...  

Author(s):  
Takao Yoshikawa ◽  
Masahiro Maeda ◽  
Hideyuki Hirasawa

To prevent the brittle fracture of the extremely thick plate which is used in the deck plate and the hatch side coaming of the large container ships, it is important to detect surely and repair the inner defects, which are possible to lead the brittle fracture at an early stage. Now Ultrasonic Testing is used in order to inspect the inner defect in a thick plate, and it is necessary to select adequately the probe size and oscillating frequency to evaluate the defect size accurately. The estimation of the defect size in vertical direction to plate surface is important from the viewpoint of fatigue strength. But the vertical flaw length and also the inclined flaw length are hardly to be estimated accurately. In this study, to clarify the characteristics of reflected ultrasonic wave from the defect, the wave propagation behavior is simulated with the numerical simulation program by FEM which is developed by the authors. In this program, the governing equation of elastic wave propagation is calculated in time domain with explicit method utilizing the central-difference scheme. First, the effect of the probe size and oscillating frequency on the accuracy of defect sizing are investigated utilizing the developed program. The numerical simulation is performed for imaging to examine the length of flaw which is parallel to plate surface by normal beam technique. And, the applicability of 6dB method, which is one of the methods for estimating flaw length, is examined. Moreover, a new method for estimating flaw length which cannot be estimated by 6dB method is proposed. Secondly, in order to examine the inclined flaw length, the angel beam test is performed. The accuracy of numerical simulation for angle beam technique is confirmed by comparing experimental result. And, it is examined how the inclined angle of flaw affects the echo height, and it is shown that 6dB method and L level method are useful for the defect which is perpendicular to wave beam and the tip echo method is useful for the defect which is inclined to wave beam. The actual structure usually has a paint film. Therefore, the echo height level will be affected by paint thickness, and the paint film effects on the accuracy of defect sizing. Thirdly, the effects on echo height by film thickness are clarified by experiments and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document