A Study on Construction of Evaluation Method for Defect Sizing Utilizing Numerical Simulation

Author(s):  
Takao Yoshikawa ◽  
Masahiro Maeda ◽  
Hideyuki Hirasawa

To prevent the brittle fracture of the extremely thick plate which is used in the deck plate and the hatch side coaming of the large container ships, it is important to detect surely and repair the inner defects, which are possible to lead the brittle fracture at an early stage. Now Ultrasonic Testing is used in order to inspect the inner defect in a thick plate, and it is necessary to select adequately the probe size and oscillating frequency to evaluate the defect size accurately. The estimation of the defect size in vertical direction to plate surface is important from the viewpoint of fatigue strength. But the vertical flaw length and also the inclined flaw length are hardly to be estimated accurately. In this study, to clarify the characteristics of reflected ultrasonic wave from the defect, the wave propagation behavior is simulated with the numerical simulation program by FEM which is developed by the authors. In this program, the governing equation of elastic wave propagation is calculated in time domain with explicit method utilizing the central-difference scheme. First, the effect of the probe size and oscillating frequency on the accuracy of defect sizing are investigated utilizing the developed program. The numerical simulation is performed for imaging to examine the length of flaw which is parallel to plate surface by normal beam technique. And, the applicability of 6dB method, which is one of the methods for estimating flaw length, is examined. Moreover, a new method for estimating flaw length which cannot be estimated by 6dB method is proposed. Secondly, in order to examine the inclined flaw length, the angel beam test is performed. The accuracy of numerical simulation for angle beam technique is confirmed by comparing experimental result. And, it is examined how the inclined angle of flaw affects the echo height, and it is shown that 6dB method and L level method are useful for the defect which is perpendicular to wave beam and the tip echo method is useful for the defect which is inclined to wave beam. The actual structure usually has a paint film. Therefore, the echo height level will be affected by paint thickness, and the paint film effects on the accuracy of defect sizing. Thirdly, the effects on echo height by film thickness are clarified by experiments and numerical simulations.

2012 ◽  
Vol 26 (6) ◽  
pp. 441-447 ◽  
Author(s):  
Shinichi Tashiro ◽  
Manabu Tanaka ◽  
Tomoyuki Ueyama ◽  
Tetsuo Era

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


Author(s):  
Z. Y. Song ◽  
C. Cheng ◽  
F. M. Xu ◽  
J. Kong

Based on the analytical solution of one-dimensional simplified equation of damping tidal wave and Heuristic stability analysis, the precision of numerical solution, computational time and the relationship between the numerical dissipation and the friction dissipation are discussed with different numerical schemes in this paper. The results show that (1) when Courant number is less than unity, the explicit solution of tidal wave propagation has higher precision and requires less computational time than the implicit one; (2) large time step is allowed in the implicit scheme in order to reduce the computational time, but the precision of the solution also reduce and the calculation precision should be guaranteed by reducing the friction factor: (3) the friction factor in the implicit solution is related to Courant number, presented as the determined friction factor is smaller than the natural value when Courant number is larger than unity, and their relationship formula is given from the theoretical analysis and the numerical experiments. These results have important application value for the numerical simulation of the tidal wave.


1985 ◽  
Vol 1985 (158) ◽  
pp. 588-601
Author(s):  
Yukio Ueda ◽  
You Chul Kim ◽  
Katsuya Kajimoto ◽  
Masanao Kuroki ◽  
Yukito Hagiwara ◽  
...  

2009 ◽  
Vol 44 (3) ◽  
pp. 432-436
Author(s):  
Nobukazu Shimada ◽  
Sadanao Rikiyasu ◽  
Keiichi Akaboshi ◽  
Takuji Doi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document