Numerical simulation of keyhole welding of aluminium thick plate with plasma arc

2012 ◽  
Vol 26 (6) ◽  
pp. 441-447 ◽  
Author(s):  
Shinichi Tashiro ◽  
Manabu Tanaka ◽  
Tomoyuki Ueyama ◽  
Tetsuo Era
1999 ◽  
Vol 48 (9) ◽  
pp. 1691
Author(s):  
SHAO QI-YUN ◽  
HE YU ◽  
GUO WEN-KANG ◽  
XU PING ◽  
ZANG DE-HONG

2013 ◽  
Author(s):  
Hu Yong ◽  
◽  
Xiang Yong ◽  
Zheng Beijia ◽  
Zhang Yi ◽  
...  

2011 ◽  
Vol 399-401 ◽  
pp. 1812-1815
Author(s):  
Feng Liang Yin ◽  
Sheng Zhu ◽  
Sheng Sun Hu

A three-dimensional mathematical model has been established to research the relation between the plasma reflection and status of keyhole during the keyhole PAW processing. It has been found that the strength of the plasma reflection is related to the keyhole dimension. Another condition to make the plasma refection appearance is that the keyhole or concave in the pool must be unsymmetrical about the axis of the plasma arc. The mechanism of detecting circuit designed based on the fact that the plasma refection is able to indicate the status of keyhole is mathematically studied. The result shows that the voltage signal in the detecting circuit can be used to indicate the status of keyhole.


Author(s):  
Takao Yoshikawa ◽  
Masahiro Maeda ◽  
Hideyuki Hirasawa

To prevent the brittle fracture of the extremely thick plate which is used in the deck plate and the hatch side coaming of the large container ships, it is important to detect surely and repair the inner defects, which are possible to lead the brittle fracture at an early stage. Now Ultrasonic Testing is used in order to inspect the inner defect in a thick plate, and it is necessary to select adequately the probe size and oscillating frequency to evaluate the defect size accurately. The estimation of the defect size in vertical direction to plate surface is important from the viewpoint of fatigue strength. But the vertical flaw length and also the inclined flaw length are hardly to be estimated accurately. In this study, to clarify the characteristics of reflected ultrasonic wave from the defect, the wave propagation behavior is simulated with the numerical simulation program by FEM which is developed by the authors. In this program, the governing equation of elastic wave propagation is calculated in time domain with explicit method utilizing the central-difference scheme. First, the effect of the probe size and oscillating frequency on the accuracy of defect sizing are investigated utilizing the developed program. The numerical simulation is performed for imaging to examine the length of flaw which is parallel to plate surface by normal beam technique. And, the applicability of 6dB method, which is one of the methods for estimating flaw length, is examined. Moreover, a new method for estimating flaw length which cannot be estimated by 6dB method is proposed. Secondly, in order to examine the inclined flaw length, the angel beam test is performed. The accuracy of numerical simulation for angle beam technique is confirmed by comparing experimental result. And, it is examined how the inclined angle of flaw affects the echo height, and it is shown that 6dB method and L level method are useful for the defect which is perpendicular to wave beam and the tip echo method is useful for the defect which is inclined to wave beam. The actual structure usually has a paint film. Therefore, the echo height level will be affected by paint thickness, and the paint film effects on the accuracy of defect sizing. Thirdly, the effects on echo height by film thickness are clarified by experiments and numerical simulations.


2020 ◽  
Vol 51 (4) ◽  
pp. 1329-1338
Author(s):  
Jean-Pierre Bellot ◽  
Léa Décultot ◽  
Alain Jardy ◽  
Stéphane Hans ◽  
Emiliane Doridot ◽  
...  

2010 ◽  
Vol 2010.48 (0) ◽  
pp. 117-118
Author(s):  
Tomomi KAWASUMI ◽  
Ryutaro HINO ◽  
Fusahito YOSHIDA ◽  
Vassili V. TOROPOV

Sign in / Sign up

Export Citation Format

Share Document