Ions Cluster Formation by Nonthermal Plasma Induced by Corona Discharge Toward Indoor Air Cleaning

2019 ◽  
Vol 2019.29 (0) ◽  
pp. J304
Author(s):  
Masaaki OKUBO ◽  
Yuji HIROYASU ◽  
Tomoyuki KUROKI
2009 ◽  
Vol 12 (2) ◽  
Author(s):  
Liping Huang ◽  
Shu Yang ◽  
Shengjie Liu ◽  
Qinghua Wang ◽  
Yimin Zhu

AbstractIn order to remove NO


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 549
Author(s):  
Maarja Kask ◽  
Marina Krichevskaya ◽  
Sergei Preis ◽  
Juri Bolobajev

The treatment of wastewaters containing hazardous volatile organic compounds (VOCs) requires the simultaneous treatment of both water and air. Refractory toluene, extensively studied for its removal, provides a basis for the comparison of its abatement methods. The oxidation of aqueous toluene by gas-phase pulsed corona discharge (PCD) in combination with the subsequent photocatalytic treatment of exhaust air was studied. The PCD treatment showed unequalled energy efficiencies in aqueous and gaseous toluene oxidation, reaching, respectively, up to 10.5 and 29.6 g·kW−1·h−1. The PCD exhaust air contained toluene residues and ozone in concentrations not exceeding 0.1 and 0.6 mg·L−1, respectively. As a result of the subsequent photocatalytic treatment, both airborne residues were eliminated within a contact time with TiO2 as short as 12 s. The results contribute to the possible application of the studied approach in closed-loop energy-saving ventilation systems.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yuanwei Lu ◽  
Dinghui Wang ◽  
Yuting Wu ◽  
Chongfang Ma ◽  
Xingjuan Zhang ◽  
...  

Photocatalysis is an effective method of air purification at the condition of a higher pollutant concentration. However, its wide application in indoor air cleaning is limited due to the low level of indoor air contaminants. Immobilizing the nanosized TiO2particles on the surface of activated carbon filter (TiO2/AC film) could increase the photocatalytic reaction rate as a local high pollutant concentration can be formed on the surface of TiO2by the adsorption of AC. However, the pollutant removal still decreased quickly with the increase in flow velocity, which results in a decrease in air treatment capacity. In order to improve the air treatment capacity by the photocatalytic oxidation (PCO) method, this paper used formaldehyde (HCHO) as a contaminant to study the effect of combination of PCO with nonthermal plasma technology (NTP) on the removal of HCHO. The experimental results show that HCHO removal is more effective with line-to-plate electrode discharge reactor; the HCHO removal and the reaction rate can be enhanced and the amount of air that needs to be cleaned can be improved. Meanwhile, the results show that there is the synergistic effect on the indoor air purification by the combination of PCO with NTP.


2018 ◽  
Vol 19 (10) ◽  
pp. 2966 ◽  
Author(s):  
Shu-Ye Jiang ◽  
Ali Ma ◽  
Srinivasan Ramachandran

Negative air ions (NAIs) have been discovered for more than 100 years and are widely used for air cleaning. Here, we have carried out a comprehensive reviewing on the effects of NAIs on humans/animals, and microorganisms, and plant development. The presence of NAIs is credited for increasing psychological health, productivity, and overall well-being but without consistent or reliable evidence in therapeutic effects and with controversy in anti-microorganisms. Reports also showed that NAIs could help people in relieving symptoms of allergies to dust, mold spores, and other allergens. Particulate matter (PM) is a major air pollutant that affects human health. Experimental data showed that NAIs could be used to high-efficiently remove PM. Finally, we have reviewed the plant-based NAI release system under the pulsed electric field (PEF) stimulation. This is a new NAI generation system which releases a huge amount of NAIs under the PEF treatment. The system may be used to freshen indoor air and reduce PM concentration in addition to enriching oxygen content and indoor decoration at home, school, hospital, airport, and other indoor areas.


2018 ◽  
Vol 137 ◽  
pp. 226-234 ◽  
Author(s):  
Qiwen Jiang ◽  
Cong Ding ◽  
Yanhua Liu

2020 ◽  
Vol 12 (21) ◽  
pp. 8774
Author(s):  
Alireza Afshari ◽  
Lars Ekberg ◽  
Luboš Forejt ◽  
Jinhan Mo ◽  
Siamak Rahimi ◽  
...  

Many people spend most of their time in an indoor environment. A positive relationship exists between indoor environmental quality and the health, wellbeing, and productivity of occupants in buildings. The indoor environment is affected by pollutants, such as gases and particles. Pollutants can be removed from the indoor environment in various ways. Air-cleaning devices are commonly marketed as benefiting the removal of air pollutants and, consequently, improving indoor air quality. Depending on the type of cleaning technology, air cleaners may generate undesired and toxic byproducts. Different air filtration technologies, such as electrostatic precipitators (ESPs) have been introduced to the market. The ESP has been used in buildings because it can remove particles while only causing low pressure drops. Moreover, ESPs can be either in-duct or standalone units. This review aims to provide an overview of ESP use, methods for testing this product, the performance of existing ESPs concerning removing pollutants and their byproducts, and the existing market for ESPs.


Sign in / Sign up

Export Citation Format

Share Document