plate electrode
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Zutao Wang ◽  
Chuan Li ◽  
Menghan Xiao ◽  
Pengyu Wang ◽  
Ming Zhang ◽  
...  

Abstract The coalescence of droplets on the discharge electrode surface in high humidity environments has rarely been studied, which may affect discharge characteristics. Meanwhile, directional transport of droplets is of great significance for many applications ranging from fluidic processing to thermal management. Here, corona discharge in needle-plate electrode is adopted to explore the coalescence rule of droplets attached on the discharge electrode surface in high-humidity environment, and realize the counterflow of droplets. The experimental results show that the amount of coalesced droplets on the needle electrode surface reaches the maximum under -7.5 kV at relative humidity ~ 94% and ambient temperature ~ 20 ℃. When the applied voltage increases from -6 kV to -11 kV, the droplet moves up 2.76 mm in 5 s. The size of attached droplet depends on the balance of coalescence and evaporation. The coalescence is mainly attributed to the dielectrophoretic force caused by the high electric field gradient. The evaporation is related with the ionic wind generated by the corona discharge. As for the counterflow phenomenon of droplet, we speculate that the high concentration gradient of positive ions near the needle electrode provides a driving force for the negatively charged droplets. Meanwhile, the electrons and negative ions below the needle tip offer a repulsive force to the droplet. The shape and moving direction of the droplet attached on the needle surface can be manipulated by changing the voltage applied to the needle electrode, which shows the potential application value in realizing self-cleaning of electrode, liquid lens and so on.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Dalawan Limthin ◽  
Piyawan Leepheng ◽  
Annop Klamchuen ◽  
Darinee Phromyothin

Novel molecularly imprinted polymers (MIPs) represent a selectively recognized technique for electrochemical detection design. This rapid and simple method prepared via chemical synthesis consists of a monomer crosslinked with an initiator, whereas low sensitivity remains a drawback. Nanomaterials can improve charge transfer for MIP surface modification in order to overcome this problem. SPIONs have semiconductor and superparamagnetic properties that can enhance carrier mobility, causing high sensitivity of electrochemical detection. In this work, surface modification was achieved with a combination of MIP and SPIONs for gluten detection. The SPIONs were synthesized via the chemical co-precipitation method and mixed with MIPs by polymerizing gluten and methyl methacrylate (MMA), presented as a template and a monomer. Magnetic MIP (MMIP) was modified on a carbon-plate electrode. The morphology of modified electrode surfaces was determined by scanning electron microscopy–energy-dispersive X-ray spectrometry. The performance of the MMIP electrode was confirmed by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The MMIP electrode for gluten detection shows a dynamic linear range of 5–50 ppm, with a correlation coefficient of 0.994 and a low detection limit of 1.50 ppm, which is less than the U.S. Food and Drug Administration requirements (20 ppm); moreover, it exhibits excellent selectivity, sensitivity, stability, and reproducibility.


2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Andrii Andriiovych Pakhomov ◽  
Iryna Olehivna Bevza ◽  
Viacheslav Oleksiiovych Chadyuk

The article analyzes the effect of dangerous aerosols on the human body. In order to purify the air from aerosols, the effect of an electric field on them is considered. The electric and dielectrophoretic forces acting on submicron particles in an inhomogeneous electric field of two parallel wires are calculated. It is shown that part of this field is identical to the field between the wire and the grounded plate electrode located in the middle between the wires. This allows using a known formula for the electric field of a two-wire line to calculate the field gradient and the effect of dielectrophoresis on neutral particles. Smoke and dust particles already carry a negative charge, and a more or less uniform electric field is enough to move them. To filter neutral water droplets infected with the virus, you need either a field with a large gradient or a corona discharge. The paper shows that the polarization of particles in an electric field causes the particles to stick together, and larger particles settle faster on the electrodes of the filter. The design of a transparent electrostatic precipitator is proposed, which can be used to protect indoor air from external smoke, dust, or viruses.


Author(s):  
Jing Zhang ◽  
Shurong Ye ◽  
Tianxu Liu ◽  
Anbang Sun

Abstract The products of hydrogen sulfide decomposition by dielectric barrier discharge are hydrogen and sulfur. This process can successfully recover hydrogen from a hazardous by product of fossil fuel extraction, and it has thus been attracting increasing attention. In this study, we computationally examined the dynamics of dielectric barrier discharge in hydrogen sulfide. The simulations were performed with a 1d3v particle-in-cell/Monte Carlo collision model in which a parallel-plate electrode geometry with dielectrics was used. Particle recombination process is represented in the model. The discharge mode was found to be initially Townsend discharge developing from the cathode to the anode, and at the peak of the current, a more stable glow discharge develops from the anode to the cathode. A higher applied voltage results in sufficient secondary electrons to trigger a second current peak, and then the current amplitude increases. As the frequency is increased, it leads to the advance of the phase and an increase in the amplitude of the current peak. A higher dielectric permittivity also makes the discharge occur earlier and more violently in the gap.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jared Allison ◽  
John Pearce ◽  
Joseph Beaman ◽  
Carolyn Seepersad

Purpose Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The purpose of this paper is to present a volumetric AM method in the form of deeply penetrating radio frequency (RF) radiation to improve the speed of the process and the mechanical properties of the polymer parts. Design/methodology/approach The focus of this study was to demonstrate the volumetric fusion of composite mixtures containing polyamide (nylon) 12 and graphite powders using RF radiation as the sole energy source to establish the feasibility of a volumetric AM process for thermoplastic polymers. Impedance spectroscopy was used to measure the dielectric properties of the mixtures as a function of increasing graphite content and identify the percolation limit. The mixtures were then tested in a parallel plate electrode chamber connected to an RF generator to measure the heating effectiveness of different graphite concentrations. During the experiments, the surface temperature of the doped mixtures was monitored. Findings Nylon 12 mixtures containing between 10% and 60% graphite by weight were created, and the loss tangent reached a maximum of 35%. Selective RF heating was shown through the formation of fused composite parts within the powder beds. Originality/value The feasibility of a novel volumetric AM process for thermoplastic polymers was demonstrated in this study, in which RF radiation was used to achieve fusion in graphite-doped nylon powders.


KOVALEN ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 121-130
Author(s):  
Thamrin Azis ◽  
Maulidiyah Maulidiyah ◽  
Muhammad Nurdin ◽  
Muh. Zakir Muzakkar ◽  
Ratna ◽  
...  

The manufacture of titanium dioxide (TiO2) electrodes is made by anodizing method and coated with ilmenite (FeTiO3) through a dip-coating technique. The ilmenite (FeTiO3) coated TiO2/Ti plate electrode was developed for the degradation of the reactive blue 160 dye under photoelectrocatalytic UV and Visible light irradiation. The performance of FeTiO3-TiO2 / Ti composites degrades reactive blue 160 under UV irradiation and is visible photoelectrocatalytically compared to TiO2. The results of XRD characterization of TiO2 crystals in the form of anatase at 2θ, namely 35.1 ° (110), and the substitution of Fe dopant on TiO2 in the form of anatase and rutile crystals. FTIR data indicated the presence of Fe-O bonds at wave numbers <700 nm. SEM-EDX results showed a thin layer of FeTiO3 was formed, indicating that the dip-coating method was effective in the coating process. The performance of the FeTiO3-TiO2 / Ti electrode has the highest activity against the oxidation process under visible light than the TiO2/Ti electrode. The results of degradation of reactive blue 160 dye with a concentration of 0.5 ppm by photoelectrocatalytic showed that the TiO2 / Ti and FeTiO3-TiO2/Ti electrodes were active in visible irradiation with degradation rate constants of 48% and 69%. Keywords: Electrodes, ilmenite, TiO2 / Ti, degradation, reactive blue 160, photoelectrocatalysis


2021 ◽  
Author(s):  
Ayoola Brimmo ◽  
Mohammad Qasaimeh ◽  
Anoop Menachery

2021 ◽  
Author(s):  
Yeng-Yung Tsui ◽  
Hao-Yu Lin ◽  
Ting-Kai Wei ◽  
Yu-Jie Huang ◽  
Chi-Chuan Wang

Abstract A thin, flexible plate electrode was adopted to generate both ionic wind and vibration in our previous study. The design contains a metal inductor placed next to the plate electrode so that it is attracted to vibrate by the induced electrostatic force. The resulting flow was used to enhance heat transfer. In this study, a numerical methodology is developed to unveil the flow structure induced by the corona discharge and electrode vibration. The oscillatory movement of the electrode is modeled as a cantilever beam vibrating at its first resonant mode. The electric and flow fields are solved by the finite volume methods. It is shown that a jet-like flow is generated by the electric discharge. The oscillatory movement of the jet results in flat temperature profile in comparison with the corona only system. Owing to the unsteady characteristic, the jet strength is less strong than that without vibration. The calculated results are qualitatively in line with the experiments, though some considerable differences exist. It is found that the oscillatory flow brings about lower overall heat transfer effectiveness than that without vibration regardless of the corona voltage. On the contrary, experiments showed that heat transfer is enhanced at low corona voltages where the ionic wind is not so overwhelming. The disagreement is mainly attributed to the 2-D assumption made in the simulation. The experimental arrangement, the corona discharge, and the vortex flows resulted all are three-dimensional. Therefore, 3-D calculations become necessary.


Sign in / Sign up

Export Citation Format

Share Document