cleaning technology
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 85)

H-INDEX

16
(FIVE YEARS 5)

2022 ◽  
Vol 12 (5) ◽  
pp. 984-988
Author(s):  
Yan-Qiu Yang ◽  
Shuo-Yang Zhao

This study aims to solve existing problems in cleaning medical devices, such as the cumbersome loading of minimally invasive surgical instruments, the incomplete cleaning of instruments with complex structures, and the low cleaning efficiency of ordinary instruments. A pulsating vacuum cleaning machine was combined with ultrasonic cleaning and boiling cleaning technology to clean various complex medical devices through a pressure pulsating process (i.e., repetitive pump-out and pumpin until the cleaning results meet the cleaning standards for medical devices). The cleaning results of spay washing, ultrasound cleaning and pulsating vacuum cleaning were compared among four groups of medical devices, including silica gel hoses, chamber instruments, whole box of minimally invasive instruments and surgical instruments. The amount of protein residues was tested using the spectrophotometric method. The testing results revealed that the loading capacity of a pulsating vacuum cleaning machine is 3–4 times as much as that of an ordinary spray cleaning machine, without manual placement and connection operation required, which reduced the workload of pretreatment. The protein residue after cleaning meets the requirements of the YY/T0734 standard for the cleaning effect of medical devices. Pulsating vacuum cleaning technology has an overall better loading capacity, when compared to spay washing and ultrasound cleaning, and this can make up for the shortcomings of commonly used cleaning machines, such as the low cleaning efficiency and unsatisfactory cleaning results of medical devices with complex structures.


2022 ◽  
Vol 2022 (1) ◽  
pp. 21-28
Author(s):  
Vyachyeslav Prikhodko ◽  
Ravil Nigmetzyanov ◽  
Dmitriy Fatyukhin ◽  
Aleksandr Kramarenko ◽  
Alexander Nechay

A brief overview of modern research on ultrasonic cleaning technology is given.


2021 ◽  
Vol 11 (24) ◽  
pp. 11832
Author(s):  
Ji-Eon Kim ◽  
Pyung-Su Kim ◽  
Jong-Myoung Lee ◽  
Han-Seop Choe ◽  
Jong-Do Kim

While producing gas fuel supply pipes for duel fuel (DF) engines, a welding process is essential. Accordingly, specimen management before and after welding is crucial to obtain highly reliable weldments. In this study, we developed an environmentally friendly laser cleaning technology to address a toxic work environment and environmental pollution problems caused by chemical cleaning technology utilized in post-welding treatment of gas fuel supply for DF engines. An experiment was conducted by implementing surface laser cleaning of the butt and fillet weldment specimens according to process parameters. Conditions of process parameters were identified for facilitating laser cleaning and used in prototype production. The prototypes were processed through laser and chemical cleaning, and the quality of the end products was compared. The results indicated that the proposed method satisfactorily cleans the prototype surface without generating a toxic work environment and environmental pollution problems. Moreover, the roughness of approximately 5 μm was achieved on the laser cleaned surface. This is considered to be able to increase the adhesion of the paint compared to the smooth chemical cleaned surface during the painting for anticorrosion of the product.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1510
Author(s):  
Ji-Eon Kim ◽  
Jong-Myoung Lee ◽  
Jeong-Hun Hyun ◽  
Je-Han Jeong ◽  
Jong-Do Kim

Shipyards are very interested in improving their working environment and resolving environmental pollution issues by replacing mechanical cleaning technologies used before and after painting processes with laser cleaning technology. Because epoxy paint is thickly coated, with a thickness of 200 μm or greater, it is difficult to remove using both laser cleaning and mechanical cleaning technologies. Therefore, this study tried to obtain effective cleaning results by controlling the process parameters when removing the thick epoxy coating using a Q-switching fiber laser cleaning system with an average power of 100 W developed by our research team. The pulse duration time of the laser is 150 ns. Additionally, in order to determine whether the cleaning was sufficient, the difference in laser-induced plume/plasma was compared. By controlling the beam scanning patterns, line overlap rate, and pulse overlap rate, it was possible to obtain effective cleaning results without introducing removal deviation. In addition, the NOP increased when the laser beam overlap rate increased. This increased the amount of heat input to the material and reduced the number of scans required to remove the epoxy paint. As a result of the plume/plasma analysis, less plume/plasma was generated as the paint was removed if the epoxy paint remained on the surface. On the other hand, when all of the paint was removed, a higher brightness of plume/plasma generated by evaporation of the bare metal was observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhuoyang Lyu

The pedestrian detection model has a high requirement on the quality of the dataset. Concerning this problem, this paper uses data cleaning technology to improve the quality of the dataset, so as to improve the performance of the pedestrian detection model. The dataset used in this paper is obtained from subway stations in Beijing and Nanjing. The data images’ quality is subject to motion blur, uneven illumination, and other noisy factors. Therefore, data cleaning is very important for this paper. The data cleaning process in this paper is divided into two parts: detection and correction. First, the whole dataset goes through blur detection, and the severely blurred images are filtered as the difficult samples. Then, the image is sent to DeblurGAN for deblur processing. 2D gamma function adaptive illumination correction algorithm is used to correct the subway pedestrian image. Then, the processed data is sent to the pedestrian detection model. Under different data cleaning datasets, through the analysis of the detection results, it is proved that the data cleaning process significantly improves the detection model’s performance.


2021 ◽  
Author(s):  
Zhaoqiang Zeng ◽  
Qiliang Liu ◽  
RuiLin Duan ◽  
Weiyu Zeng ◽  
Yu Yan

2021 ◽  
Vol 13 (22) ◽  
pp. 12915
Author(s):  
Shuangshuang Wu ◽  
Xiujie Jia ◽  
Sheng Xiong ◽  
Fangyi Li ◽  
Mingliang Ma ◽  
...  

Wet shot peening (WSP) cleaning technology has the advantages of being green, having a high efficiency, and producing almost no pollution to the environment. Under the development trend of green environmental protection, WSP is more and more desired by the public. However, in the study of WSP cleaning paint, there is little research on process parameter optimization. Accordingly, this article uses an orthogonal experiment, taking the cleaning efficiency and the substrate removal mass as objectives, to optimize the parameters of pressure, stand-off distance, traverse rate, and cleaning times. The experimental results show that the cleaning efficiency is improved by increasing the pressure, stand-off distance, and traverse rate or decreasing the cleaning times within the scope of this experiment. The pressure and cleaning times are positively correlated with the substrate removal mass, whereas the traverse rate is negatively correlated. As the stand-off distance increases, the substrate removal mass initially increases and then decreases. The traverse rate has a significant influence on the cleaning efficiency and the substrate removal mass. The optimal process parameters based on the cleaning efficiency are 0.45 MPa pressure, 140 mm stand-off distance, 5 mm/s traverse rate, and one-time cleaning. Besides, the cleaning efficiency at such conditions is 64.23 %/min. Additionally, the substrate removal mass is optimized under 0.25 MPa pressure, 60 mm (or 140 mm) stand-off distance, 5 mm/s traverse rate, and one-time cleaning to give a substrate removal mass of approximately zero. The analysis of parameters provides a reference for selecting the parameters in the actual application of WSP cleaning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamish C. L. Yau ◽  
Adam K. Malekpour ◽  
Nazarmohammad G. Momin ◽  
Ana L. Morales-García ◽  
William G. T. Willats ◽  
...  

AbstractWashed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that ‘invisible’ soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.


Sign in / Sign up

Export Citation Format

Share Document