An Experimental Study on the Fluid Forces Acting on the Impellers of Centrifugal Pumps Induced by Impeller-Guide vane Interaction

2000 ◽  
Vol 2000 (0) ◽  
pp. 197
Author(s):  
Shijie GUO ◽  
Yoshiyuki MARUTA
2007 ◽  
Vol 129 (11) ◽  
pp. 1422-1427 ◽  
Author(s):  
Takayuki Suzuki ◽  
Romain Prunières ◽  
Hironori Horiguchi ◽  
Tomonori Tsukiya ◽  
Yoshiyuki Taenaka ◽  
...  

In centrifugal pumps for artificial hearts, a magnetic drive with lightly loaded journal bearing system is often used. In such a system, the rigidity of the bearing is small and the impeller usually rotates over the critical speed. In such cases, the rotordynamic fluid forces play an important role for shaft vibration. In the present study, the characteristics of the rotordynamic fluid forces on the impeller were examined. The rotordynamic fluid forces were measured in the cases with/without the whirling motion. It was found that the rotordynamic forces become destabilizing in a wide range of positive whirl. The effect of leakage flow was also examined.


Author(s):  
A. Guinzburg ◽  
C. E. Brennen ◽  
A. J. Acosta ◽  
T. K. Caughey

The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide vane was designed for the experiment so that swirl could be introduced at the leakage flow inlet. The data demonstrates substantial rotordynamic effects and a destabilizing tangential force for small positive whirl ratios; this force decreased with increasing flow rate. The effect of swirl on the rotordynamic forces was found to be destabilizing.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Ren Yun ◽  
Zhu Zuchao ◽  
Wu Denghao ◽  
Li Xiaojun

Multistage centrifugal pumps are highly efficient and compact in structure. Pump efficiency can be improved by an effective understanding of hydraulic behavior and energy loss, however, the traditional hydraulic loss evaluation method does not readily reveal the specific locations of energy loss in the pump. In this study, a guide ring was imposed in multistage pumps, and an entropy production theory was applied to investigate irreversible energy loss of a multistage pump with and without guide ring. Detailed distributions of energy losses in the pumps were calculated to determine the respective entropy production rates (EPRs). The EPR values as calculated are in close accordance with actual hydraulic loss values in the pumps. EPR values were higher in the multistage pump with the guide ring than the pump without a guide ring under part-load flow conditions (0.2Qd). However, the vortex flow in the pump was weakened (or eliminated) by the guide ring as flow rate increased; this reduced energy loss in the chambers. Flow passing the chamber was stabilized by the guide ring, which decreased shock and vortex loss in the chamber and guide vane. Under both designed flow condition and overload conditions, the EPR values of the guide ring-equipped multistage pump were lower than those without the guide ring. Furthermore, minimum efficiency index (MEI) values were also calculated for the two chamber structures; it was found that overall efficiency of pump with guide ring is better than that without.


1994 ◽  
Vol 116 (1) ◽  
pp. 110-115 ◽  
Author(s):  
A. Guinzburg ◽  
C. E. Brennen ◽  
A. J. Acosta ◽  
T. K. Caughey

In recent years, increasing attention has been given to fluid-structure interaction problems in turbomachines. The present research focuses on just one such fluid-structure interaction problem, namely, the role played by fluid forces in determining the rotordynamic stability and characteristics of a centrifugal pump. The emphasis of this study is to investigate the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. An experiment was designed to measure the rotordynamic shroud forces due to simulated leakage flows for different parameters such as flow rate, shroud clearance, face-seal clearance and eccentricity. The data demonstrate substantial rotordynamic effects and a destabilizing tangential force for small positive whirl frequency ratios; this force decreased with increasing flow rate. The rotordynamic forces appear to be inversely proportional to the clearance and change significantly with the flow rate. Two sets of data taken at different eccentricities yielded quite similar nondimensional rotordynamic forces indicating that the experiments lie within the linear regime of eccentricity.


Sign in / Sign up

Export Citation Format

Share Document