Numerical and experimental study on flow-induced noise at blade-passing frequency in centrifugal pumps

2014 ◽  
Vol 27 (3) ◽  
pp. 606-614 ◽  
Author(s):  
Jun Yang ◽  
Shouqi Yuan ◽  
Jianping Yuan ◽  
Qiaorui Si ◽  
Ji Pei
2014 ◽  
Vol 6 ◽  
pp. 583482 ◽  
Author(s):  
Ailing Yang ◽  
Dapeng Lang ◽  
Guoping Li ◽  
Eryun Chen ◽  
Ren Dai

A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has increased 7% while the hydraulic efficiency decreased 11.75% as blade outlet angles increased from 18° to 39°. The amplitude of pressure fluctuation at the first blade passing frequency has decreased but increased at the second-order blade passing frequency as the angle growing. The total fluctuation power near volute tongue goes up about 12% every 3° increment of blade outlet angle. The results also show that vibrating-velocity of the volute at second-order blade passing frequency is much higher than at other frequencies, and the velocity increases rapidly as blade outlet angle varies from 18° to 39°. At the same time, the sound pressure level outside the pump has increased about 8.6 dB when the angle increased from 18° to 39°.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
Chang Guo ◽  
Ming Gao ◽  
Peixin Dong ◽  
Yuetao Shi ◽  
Fengzhong Sun

As one kind of serious environmental problems, flow-induced noise in centrifugal pumps pollutes the working circumstance and deteriorates the performance of pumps, meanwhile, it always changes drastically under various working conditions. Consequently, it is extremely significant to predict flow-induced noise of centrifugal pumps under various working conditions with a practical mathematical model. In this paper, a three-layer back propagation (BP) neural network model is established and the number of input, hidden and output layer node is set as 3, 6 and 1, respectively. To be specific, the flow rate, rotational speed and medium temperature are chosen as input layer, and the corresponding flow-induced noise evaluated by average of total sound pressure level (A_TSPL) as output layer. Furthermore, the tansig function is used to act as transfer function between the input layer and hidden layer, and the purelin function is used between hidden layer and output layer. The trainlm function based on Levenberg-Marquardt algorithm is selected as the training function. By using a large number of sample data, the training of the network model and prediction research are accomplished. The results indicate that good correlation is established among the sample data, and the predictive values show great consistence with simulation ones, of which the average relative error of A_TSPL in process of verification is 0.52%. The precision of the model can satisfy the requirement of relevant research and engineering application.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1408 ◽  
Author(s):  
Bin Huang ◽  
Guitao Zeng ◽  
Bo Qian ◽  
Peng Wu ◽  
Peili Shi ◽  
...  

The pressure fluctuation inside centrifugal pumps is one of the main causes of hydro-induced vibration, especially at the blade-passing frequency and its harmonics. This paper investigates the feature of blade-passing frequency excitation in a low-specific-speed centrifugal pump in the perspective of local Euler head distribution based on CFD analysis. Meanwhile, the relation between local Euler head distribution and pressure fluctuation amplitude is observed and used to explain the mechanism of intensive pressure fluctuation. The impeller blade with ordinary trailing edge profile, which is the prototype impeller in this study, usually induces wake shedding near the impeller outlet, making the energy distribution less uniform. Because of this, the method of reducing pressure fluctuation by means of improving Euler head distribution uniformity by modifying the impeller blade trailing edge profile is proposed. The impeller blade trailing edges are trimmed in different scales, which are marked as model A, B, and C. As a result of trailing edge trimming, the impeller outlet angles at the pressure side of the prototype of model A, B, and C are 21, 18, 15, and 12 degrees, respectively. The differences in Euler head distribution and pressure fluctuation between the model impellers at nominal flow rate are investigated and analyzed. Experimental verification is also conducted to validate the CFD results. The results show that the blade trailing edge profiling on the pressure side can help reduce pressure fluctuation. The uniformity of Euler head circumferential distribution, which is directly related to the intensity of pressure fluctuation, is improved because the impeller blade outlet angle on the pressure side decreases and thus the velocity components are adjusted when the blade trailing edge profile is modified. The results of the investigation demonstrate that blade trailing edge profiling can be used in the vibration reduction of low specific impellers and in the engineering design of centrifugal pumps.


2020 ◽  
Vol 10 (3) ◽  
pp. 1022 ◽  
Author(s):  
Chang Guo ◽  
Ming Gao ◽  
Suoying He

Flow-induced noise is a significant concern for the design and operation of centrifugal pumps. The negative impacts of flow-induced noise on operating stability, human health and the environment have been shown in many cases. This paper presents a comprehensive review of the flow-induced noise study for centrifugal pumps to synthesize the current study status. First, the generation mechanism and propagation route of flow-induced noise are discussed. Then, three kinds of study methodologies, including the theoretical study of hydrodynamic noise, numerical simulation and experimental measurement study, are summarized. Subsequently, the application of the three study methodologies to the analysis of the distribution characteristics of flow-induced noise is analyzed from aspects of the noise source identification and comparison, the frequency response analysis, the directivity characteristics of sound field and the noise changing characteristics under various operating conditions. After that, the analysis of the noise optimization design of centrifugal pumps is summarized. Finally, based on previous study results, this paper puts forward the unsolved problems and implications for future study. In conclusion, the information collected in this review paper could guide further study of the flow-induced noise of centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document