317 Lagrangian behavior of point sources solid particles in upward turbulent gas flow through a vertical channel

2012 ◽  
Vol 2012.51 (0) ◽  
pp. 107-108
Author(s):  
Shota IKEDA ◽  
Yoichi MITO
2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


1987 ◽  
Vol 109 (4) ◽  
pp. 535-540 ◽  
Author(s):  
W. Tabakoff ◽  
M. F. Malak

This paper describes an experimental method used to find particle restitution coefficients. The equations that govern the motion of solid particles suspended by a compressible gas flow through a turbomachine depend on the restitution coefficients. Analysis of the data obtained by a laser-Doppler velocimeter (LDV) system of the collision phenomenon gives the restitution ratios as a function of the incidence angle. From these ratios, the particle velocity components after collision are computed and used as the initial conditions to the solution of the governing equations of motion for particle trajectories. The erosion of metals impacted by small dust particles can be calculated by knowing the restitution coefficients. The alloy used in this investigation was 410 stainless steel.


Author(s):  
Chungpyo Hong ◽  
Kyohei Isobe ◽  
Yutaka Asako ◽  
Ichiro Ueno

This paper describes experimental results on total temperature measurement to obtain heat transfer characteristics of turbulent gas flow in a microtube with constant wall temperature. The experiments were performed for nitrogen gas flow through a microtube of 354 μm in diameter with 100 mm in length. The wall temperature was maintained at 310 K, 330 K, and 350 K by circulating water around the microtube, respectively. The stagnation pressure was chosen in such a way that the exit Mach number ranges from 0.1 to 1.0. In order to obtain heat transfer rate of turbulent gas flow through a micro-tube, the total temperatures of gas flowing out of a microtube exit were measured with the set of total temperature measurement attached to micro stage with position fine adjustment. The numerical computations based on the Arbitrary - Langrangian - Eulerian (ALE) method were also performed for the turbulent gas flow with the same conditions of the experiments. The results were in excellent agreement.


1984 ◽  
Vol 106 (2) ◽  
pp. 125-134 ◽  
Author(s):  
W. Tabakoff

The objective of this paper is to review experimental and analytical investigations concerning the effect of the presence of solid particles on the performance of turbomachines. Experimental data on the effect of solid particles on turbine and compressor performance are examined. Some basic data have been reinterpreted to provide guidance for future design. The equations that govern the dynamics of the three-dimensional motion of solid particles suspended in compressible gas flow through a rotating cascade of a turbine are discussed. The results obtained from the solution of these equations are presented to indicate the location on the turbine blade subjected to erosion damage. Some erosion data relevant to gas turbine engines are discussed. The concluding remarks include a global view of the state of the art of particulate flow problems in turbomachinery.


Author(s):  
Chungpyo Hong ◽  
Yuki Uchida ◽  
Takaharu Yamamoto ◽  
Yutaka Asako ◽  
Koichi Suzuki

This paper presents experimental results on heat transfer characteristics of turbulent gas flows though a micro-tube with constant wall temperature. The experiments were performed for nitrogen gas flows through a micro-tube with 242μm in diameter and 50 mm in length. The wall temperature was maintained at 5K, 20K and 30K higher than the inlet temperature by circulating water around the micro-tube, respectively. In order to measure heat transfer rate of gas flow through a micro-tube, the total temperature at a micro-tube exit was measured. The stagnation pressure was chosen in such a way that the Reynolds number ranges from 3000 to 12000. The outlet pressure was fixed at the atmospheric condition. The total temperature at the outlet, the inlet stagnation temperature, the mass flow rate, and the inlet pressure were measured. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy. A correlation for the prediction of the heat transfer rate of the turbulent gas flow through a micro-tube was proposed.


Author(s):  
W. Tabakoff ◽  
M. F. Malak

This paper describes an experimental method used to find the particles restitution coefficients. The equations that govern the motion of solid particles suspended by a compressible gas flow through a turbomachine depend on the restitution coefficients. Analysis of the data obtained by Laser Doppler Velocimeter (LDV) System of the collision phenomenon gives the restitution ratios as a function of the incidence angle. From these ratios, the particle velocity components after collision are computed and used as the initial conditions to the solution of the governing equations of motion for the particles trajectory. The erosion of metals impacted by small dust particles can be calculated by knowing the restitution coefficients. The alloy used in this investigation was 410 stainless steel.


1998 ◽  
Vol 120 (3) ◽  
pp. 784-787 ◽  
Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang

A numerical study is performed to investigate thermal transport phenomena in turbulent gas flow through a tube heated at high temperature difference and uniform wall temperature. A k-ε turbulence model is employed to determine the turbulent viscosity and the turbulent kinetic energy. The turbulent heat flux is expressed by a Boussinesq approximation in which the eddy diffusivity of the heat is determined by a t2-ε, heat transfer model. The governing boundary layer equations are discretized by means of a control-volume finite difference technique and are numerically solved using a marching procedure. It is disclosed from the study that (i) laminarization takes place in a turbulent gas flow through a pipe with high uniform wall temperature just as it does in a pipe with high unform wall heat flux, and (ii) the flow in a tube heated to high temperature difference and uniform wall temperature is laminarized at a lower heat than that under the uniform heat flux condirion.


Sign in / Sign up

Export Citation Format

Share Document