Model-Based Vibration Suppression Control for an Articulated Robot : Simulation Study on Effects of the Position Control Loop Equipped with Time-Varying Reduced-Order Model(Design and Control 2,Session: MP2-B)

Author(s):  
Masahiko ITOH
Author(s):  
Yogesh V. Hote ◽  
A. N. Jha ◽  
J. R. P. Gupta

In this paper, simple approach is proposed to determine reduced order model of a unstable open-loop position control system. This approach is based on Krishnamurthy’s approach on Routh criterion on reduced order modelling. The results are simulated in Matlab environment.


Author(s):  
Kiyoshi Takagi ◽  
Hidekazu Nishimura

Abstract This paper deals with modeling and control of a crane mounted on a tower-like flexible structure. A fast transfer of the load causes the sway of the load rope and the vibration of the flexible structure. Our object is to control both the sway and the vibration by the inherent capability of the tower crane. This paper makes its three-dimensional models for simulation and reduced-order-model in order to design the decentralized control system. Then, we design the decentralized H∞ compensator and verify the efficiency by simulations and experiments.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Rongrong Yang ◽  
Yongling Fu ◽  
Ling Zhang ◽  
Haitao Qi ◽  
Xu Han ◽  
...  

A novel sliding mode control (SMC) design framework is devoted to providing a favorable SMC design solution for the position tracking control of electrohydrostatic actuation system (EHSAS). This framework is composed of three submodules as follows: a reduced-order model of EHSAS, a disturbance sliding mode observer (DSMO), and a new adaptive reaching law (NARL). First, a reduced-order model is obtained by analyzing the flow rate continuation equation of EHSAS to avoid the use of a state observer. Second, DSMO is proposed to estimate and compensate mismatched disturbances existing in the reduced-order model. In addition, a NARL is developed to tackle the inherent chattering problem of SMC. Extensive simulations are conducted compared with the wide adoption of three-loop PID method on the cosimulation platform of EHSAS, which is built by combining AMESim with MATLAB/Simulink, to verify the feasibility and superiority of the proposed scheme. Results demonstrate that the chattering can be effectively attenuated, and the mismatched disturbance can be satisfyingly compensated. Moreover, the transient performance, steady-state accuracy, and robustness of position control are all improved.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, some techniques for order reduction of nonlinear systems with periodic coefficients subjected to external periodic excitations are presented. The periodicity of the linear terms is assumed to be non-commensurate with the periodicity of forcing vector. The dynamical equations of motion are transformed using the Lyapunov-Floquet (L-F) transformation such that the linear parts of the resulting equations become time-invariant while the forcing and/or nonlinearity takes the form of quasiperiodic functions. The techniques proposed here; construct a reduced order equivalent system by expressing the non-dominant states as time-varying functions of the dominant (master) states. This reduced order model preserves stability properties and is easier to analyze, simulate and control since it consists of relatively small number of states in comparison with the large scale system. Specifically, two methods are outlined to obtain the reduced order model. First approach is a straightforward application of linear method similar to the ‘Guyan reduction’, the second novel technique proposed here, utilizes the concept of ‘invariant manifolds’ for the forced problem to construct the fundamental solution. Order reduction approach based on invariant manifold technique yields unique ‘reducibility conditions’. If these ‘reducibility conditions’ are satisfied only then an accurate order reduction via ‘invariant manifold’ is possible. This approach not only yields accurate reduced order models using the fundamental solution but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. One can also recover ‘resonance conditions’ associated with the fundamental solution which could be obtained via perturbation techniques by assuming weak parametric excitation. This technique is capable of handing systems with strong parametric excitations subjected to periodic and quasi-periodic forcing. These methodologies are applied to a typical problem and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control system design of large-scale parametrically excited nonlinear systems subjected to external periodic excitations.


2017 ◽  
Vol 13 (1) ◽  
pp. 50-65
Author(s):  
Shibly A. AL-Samarraie ◽  
Mohsin N. Hamzah ◽  
Imad A. Abdulsahib

This paper presents a vibration suppression control design of cantilever beam using two piezoelectric ‎patches. One patch was used as ‎an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. ‎the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state ‎estimation error is proved bounded. An ‎optimal LQR controller is designed then using the ‎estimated states with the sliding mode observer, to ‎suppress the vibration of a smart cantilever ‎beam via the piezoelectric elements. The control spillover problem was avoided, by deriving an avoidance ‎condition, to ensure the ‎asymptotic stability for the proposed vibration ‎control design. ‎The numerical simulations were achieved to ‎test the vibration attenuation ability of the ‎proposed optimal control. For 15 mm initial tip ‎displacement, the piezoelectric actuator found ‎able to reduce the tip displacement to about 0.1 ‎mm after 4s, while it was 1.5 mm in the ‎open loop case.  The current experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as well a good agreement with theoretical results.


Sign in / Sign up

Export Citation Format

Share Document