scholarly journals C-1-3 Self-Sensing and Model-Free Active Vibration Control Based on Adaptive Feed-forward Cancellation.

Author(s):  
Shota Yabui ◽  
Shuichi Yahagi ◽  
Itsuro KAJIWARA
Author(s):  
Shota Yabui ◽  
Itsuro Kajiwara ◽  
Ryohei Okita

This paper presents active vibration control based on self-sensing for unknown target structures by direct velocity feedback (DVFB) with enhanced adaptive feed-forward cancellation (AFC). AFC is known as an adaptive control method, and the adaptive algorithm can estimate a periodic disturbance. In a previous study, an enhanced AFC was developed to compensate for a non-periodic disturbance. An active vibration control based on self-sensing by DVFB can suppress mechanical resonance by using relative velocity between the voice coil actuator and a target structure. In this study, the enhanced AFC was applied to compensate disturbance for the self-sensing vibration control system. The simulation results showed the vibration control system with DVFB and enhanced AFC could suppress mechanical resonance and compensate disturbances.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Zhong ◽  
Yong Wang ◽  
Hanzheng Ran ◽  
Qing Wang ◽  
Changxing Shao

A novel distributed PZT control strategy based on characteristic model is presented for space frame structure in this paper. It is a challenge to obtain the exact mechanical model for space structure, since it is a coupling MIMO plant with unknown parameters and disturbances. Thus the characteristic modeling theory is adopted to establish the needed model, which can accurately describe the dynamic characteristics of the space frame structure in real time. On basis of this model, a keep tracking controller is designed to suppress the vibration actively. It is shown that the proposed model-free method is very robust and easy to implement. To solve the complex and difficulty problem on PZT location optimization, an efficient method with modal strain energy and maximum vibration amplitude is proposed. Finally, a simulation study is conducted to investigate the effectiveness of the proposed active vibration control scheme.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

2021 ◽  
Author(s):  
Nikolaos Chrysohoidis ◽  
Grigoris Chatziathanasiou ◽  
Georgopoulos Kostas ◽  
Dimitrios A. Saravanos

Sign in / Sign up

Export Citation Format

Share Document