220 Characteristic of Fatigue in Quasi-Isotropic Alumina-Fiber Reinforced Plastic : Internal Damage Progression and Fatigue Life

Author(s):  
Hiroyuki Kawada ◽  
Shinichiro Yamazaki ◽  
Takashi Matsuzaki
2011 ◽  
Vol 462-463 ◽  
pp. 484-488 ◽  
Author(s):  
Peng Gang Mu ◽  
Xiao Peng Wan ◽  
Mei Ying Zhao

Based on an amount of fatigue experimental data of fiber reinforced plastic composite, a new three-parameter S-N curve model is proposed to describe the relationships between the loads and fatigue life under constant amplitude cyclic loading. As the logistic curve behaves as sigmoidal which is the similar with previous S-N models, and from this comparability, an S-N equation with logistic’ form has been established. The model can assess the fatigue behaviors of FRP under various loading conditions, such as, tension-tension (T-T), tension-compression (T-C) or compression-compression (C-C) loading under different stress ratios of the whole region of fatigue life. Several examples are employed to illustrate that the model has ability to fit several different sets of experimental data accurately.


2017 ◽  
Vol 110 ◽  
pp. 429-441 ◽  
Author(s):  
M. Mejri ◽  
L. Toubal ◽  
J.C. Cuillière ◽  
V. François

2021 ◽  
Vol 24 (6) ◽  
pp. 66-81
Author(s):  
V. E. Strizhius

It is noted that in modern aircraft composite structures there is a significant number of composite and metal-composite shear bolted joints, the fatigue life of which is an important factor to ensure the operating safety of such constructions. Thus, special attention is given to the evaluation of the layered composites fatigue life in such joints during tests and calculations of the similar structures components. Despite a considerable number of publications and studies on this subject, it can be observed that many important methodological issues have not been solved yet in this field. These problems can deal with the choice of the main mode of layered composites fatigue damage in shear bolted joints; the uncertainty of the basic fatigue curve; the practical absence of some models, representing diagrams of constant life fatigue for the layered composites in the joints under consideration; the uncertainty of fatigue damage summation rule in the layered composites in the investigated joints. Based on the review results and the data analysis of domestic and foreign publications including the results of specially conducted studies, the solutions to these problems are proposed. The proposed solutions were verified by analyzing the calculated and experimental data on the fatigue life of carbon fiber reinforced plastic laminates НТА7/6376 [45/-45/0/90]3S in the double-shear bolted joints specimens.


Author(s):  
Sang-Young Kim ◽  
Dave Kim

This paper presents an experimental investigation on the effect of interference-fit on the bearing strength and fatigue life of pin-loaded plain-woven and cross ply carbon fiber-reinforced plastic laminate (CFRP). Stainless steel pins are installed to five different sized holes on the CFRP specimens to achieve transition-fit and four interference-fits (0.2%, 0.4%, 0.6%, and 1.0%). The quasi-static and fatigue (R = 0.1) properties of the pin-loaded CFRP are then compared to each other. From the experimental results, it is demonstrated that the interference-fit can improve the joint stiffness per unit bearing area, or the joint stiffness, under both the static and dynamic bearing load conditions. The ultimate bearing strength, fatigue life, and joint stiffness of interference-fit samples are higher than those of the transition-fit samples and they are maximized at an interference-fit percentage of 0.4%. Regardless of interference-fit percentage, the fatigue life of a pin-loaded CFRP specimen tends to be proportional to its joint stiffness in the beginning of a fatigue test. During fatigue testing, the joint stiffness of pin-loaded CFRP gradually decreases to the range of 18.8 GPa/mm to 18.6 GPa/mm when bearing failure occurs. The increased joint stiffness by interference-fit delays CFRP hole damage growth by reducing pin displacement under fatigue cycles.


Sign in / Sign up

Export Citation Format

Share Document