A New S-N Curve Model of Fiber Reinforced Plastic Composite

2011 ◽  
Vol 462-463 ◽  
pp. 484-488 ◽  
Author(s):  
Peng Gang Mu ◽  
Xiao Peng Wan ◽  
Mei Ying Zhao

Based on an amount of fatigue experimental data of fiber reinforced plastic composite, a new three-parameter S-N curve model is proposed to describe the relationships between the loads and fatigue life under constant amplitude cyclic loading. As the logistic curve behaves as sigmoidal which is the similar with previous S-N models, and from this comparability, an S-N equation with logistic’ form has been established. The model can assess the fatigue behaviors of FRP under various loading conditions, such as, tension-tension (T-T), tension-compression (T-C) or compression-compression (C-C) loading under different stress ratios of the whole region of fatigue life. Several examples are employed to illustrate that the model has ability to fit several different sets of experimental data accurately.

1995 ◽  
Vol 117 (1) ◽  
pp. 133-138 ◽  
Author(s):  
G. Caprino ◽  
V. Tagliaferri ◽  
L. Covelli

A previously proposed micromechanical formula, aiming to predict the vaporization energy Qv of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO2 cw laser, were treated according to a procedure previously suggested, in order to evaluate Qv. An excellent agreement was found between experimental and theoretical Qv values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.


Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Beatrice Colombo ◽  
Paolo Gaiardelli ◽  
Stefano Dotti ◽  
Flavio Caretto ◽  
Gaetano Coletta

Fiber-reinforced plastic composite materials are increasingly used in many industrial applications, leading to an increase in the amount of waste that must be treated to avoid environmental problems. Currently, the scientific literature classifies existing recycling technologies into three macro-categories: mechanical, thermal, and chemical; however, none are identified as superior to the others. Therefore, scholars and companies struggle to understand where to focus their efforts. Patent analysis, by relying on quantitative data as a precursor to new technological developments, can contribute to fully grasping current applications of each recycling technology and provide insights about their future development perspectives. Based on these premises, this paper performs a patent technology roadmap to enhance knowledge about prior, current, and future use of the main recycling technologies. The results show that recycling macro-categories have different technology maturity levels and growth potentials. Specifically, mechanical recycling is the most mature, with the lowest growth potential, while thermal and chemical recycling are in their growth stage and present remarkable future opportunities. Moreover, the analysis depicts several perspectives for future development on recycling technologies applications within different industries and underline inter- and intra-category dependencies, thus providing valuable information for practitioners and both academic and non-academic backgrounds researchers interested in the topic.


2009 ◽  
Vol 416 ◽  
pp. 149-153
Author(s):  
Li Na Si ◽  
Yun Huang ◽  
Zhi Huang ◽  
Yu Fu Wang

In this paper, performing experiment on abrasive belt grinding of glass reinforced plastic, the reasons why belt is slipping is analyzed under such circumstances when glass reinforced plastic is grinded by wet abrasive belt, a basis for the fiber reinforced plastic properties of an effective method of grinding is proposed, a solution that belt is slipping in the process is proposed too. At last, a basis is given to choose the correct hardness which on depend different parts of the hardness of the round of contacts.


Sign in / Sign up

Export Citation Format

Share Document