Evaluating Robustness of Energy Supply Systems Using a Hierarchical Optimization Method

2020 ◽  
Vol 2020.95 (0) ◽  
pp. 01_114
Author(s):  
Hiroki KAMADA ◽  
Ryohei YOKOYAMA ◽  
Yuji SHINANO ◽  
Tetsuya WAKUI
Author(s):  
Ryohei Yokoyama ◽  
Yuji Shinano ◽  
Yuki Wakayama ◽  
Tetsuya Wakui

To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. The authors have proposed a MILP method utilizing the hierarchical relationship between design and operation variables to solve the optimal design problems of energy supply systems efficiently. In addition, some strategies to enhance the computation efficiency have been adopted: bounding procedures at both the levels and ordering of the optimal operation problems at the lower level. In this paper, as an additional strategy to enhance the computation efficiency, parallel computing is adopted to solve multiple optimal operation problems in parallel at the lower level. In addition, the effectiveness of each and combinations of the strategies adopted previously and newly is investigated. This hierarchical optimization method is applied to an optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified through some case studies.


2021 ◽  
pp. 64-69
Author(s):  
E. Galperova

One of the new challenges arising from the transition of the energy industry to the path of intelligent development is to assess the effect of distributed generation (DG) on the prospects for the development of regional energy supply systems. Such an assessment requires that the factors characterized by high uncertainty be taken into account. In this case, it is expedient to employ a combination of the optimization method with the Monte Carlo method. Such an approach has already been adopted in a model (computer program) developed at the Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences. This model is designed to determine the rational mix of new power plants (with investment risks assessed and factored in) and the likely cost of electricity generation in a given aggregated region. We propose using this model as a source of projected data for an approximate assessment of the DG expansion, given the projected conditions for the energy sector and electric power industry development. It may also provide the basis for an array of research tools for relevant studies. The new toolkit requires a more detailed representation of the administrative division and the inclusion of consumers with their sources of electric power generation in the generating capacity. Although such an estimate is approximate, it can give an overall idea of the extent to which the cost and demand for electricity may vary under different options for the DG expansion in a region.


2018 ◽  
Vol 2018.93 (0) ◽  
pp. 513
Author(s):  
Yuki WAKAYAMA ◽  
Ryohei YOKOYAMA ◽  
Yuji SHINANO ◽  
Tetsuya WAKUI

2019 ◽  
Vol 2 (3) ◽  
pp. 164-169
Author(s):  
Mohammed Faza ◽  
Maulahikmah Galinium ◽  
Matthias Guenther

An energy supply system consists of a system of power plants and transmission anddistribution systems that supply electrical energy. The present project is limited to the modellingof the generation system. Its objective is the design and implementation of a web-basedapplication for simulating energy supply systems using the Laravel framework. The projectfocuses on six modules representing geothermal energy, solar energy, biopower, hydropower,storage, and fossil-based energy that are allocated to satisfy a given power demand. It isexecuted as a time series modelling for an exemplary year with hourly resolution. Thedevelopment of the software is divided into four steps, which are the definition of the userrequirements, the system design (activity, use case, system architecture, and ERD), the softwaredevelopment, and the software testing (unit testing, functionality testing, validity testing, anduser acceptance testing). The software is successfully implemented. All the features of thesoftware work as intended. Also, the software goes through validity testing using three differentinput data, to make sure the software is accurate. The result of the testing is 100% accuracy withrespect to the underlying model that was implemented in an excel calculation.


2018 ◽  
Vol 2 (42) ◽  
pp. 61-67
Author(s):  
D. Derevianko ◽  
◽  
O. Yarmoliuk ◽  
O. Bespalyi ◽  
◽  
...  

Author(s):  
Lahiru Jayasuriya ◽  
Modassar Chaudry ◽  
Meysam Qadrdan ◽  
Jianzhong Wu ◽  
Nick Jenkins

Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 100 ◽  
Author(s):  
Elaheh Jalilzadehazhari ◽  
Georgios Pardalis ◽  
Amir Vadiee

The majority of the single-family houses in Sweden are affected by deteriorations in building envelopes as well as heating, ventilation and air conditioning systems. These dwellings are, therefore, in need of extensive renovation, which provides an excellent opportunity to install renewable energy supply systems to reduce the total energy consumption. The high investment costs of the renewable energy supply systems were previously distinguished as the main barrier in the installation of these systems in Sweden. House-owners should, therefore, compare the profitability of the energy supply systems and select the one, which will allow them to reduce their operational costs. This study analyses the profitability of a ground source heat pump, photovoltaic solar panels and an integrated ground source heat pump with a photovoltaic system, as three energy supply systems for a single-family house in Sweden. The profitability of the supply systems was analysed by calculating the payback period (PBP) and internal rate of return (IRR) for these systems. Three different energy prices, three different interest rates, and two different lifespans were considered when calculating the IRR and PBP. In addition, the profitability of the supply systems was analysed for four Swedish climate zones. The analyses of results show that the ground source heat pump system was the most profitable energy supply system since it provided a short PBP and high IRR in all climate zones when compared with the other energy supply systems. Additionally, results show that increasing the energy price improved the profitability of the supply systems in all climate zones.


Energy ◽  
2012 ◽  
Vol 48 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Christian Milan ◽  
Carsten Bojesen ◽  
Mads Pagh Nielsen

Sign in / Sign up

Export Citation Format

Share Document