Study on fast and stable dynamic analysis method for multibody systems including viscoelastic body

2021 ◽  
Vol 2021.74 (0) ◽  
pp. E15
Author(s):  
Kento HIRATA ◽  
Yoshiki MAEDA ◽  
Kyuji OTO ◽  
Makoto IWAMURA
Author(s):  
Apiwat Reungwetwattana ◽  
Shigeki Toyama

Abstract This paper presents an efficient extension of Rosenthal’s order-n algorithm for multibody systems containing closed loops. Closed topological loops are handled by cut joint technique. Violation of the kinematic constraint equations of cut joints is corrected by Baumgarte’s constraint violation stabilization method. A reliable approach for selecting the parameters used in the constraint stabilization method is proposed. Dynamic analysis of a slider crank mechanism is carried out to demonstrate efficiency of the proposed method.


2019 ◽  
Vol 2019 (0) ◽  
pp. 504
Author(s):  
Syota TAKENOUCHI ◽  
Naoki TAKASHIMA ◽  
Makoto IWAMURA ◽  
Taichi SHIIBA

2011 ◽  
Vol 131 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Hiroshi Ishiguro ◽  
Katsuhiro Hirata

2011 ◽  
Vol 199-200 ◽  
pp. 251-256
Author(s):  
Kai An Yu ◽  
Ke Yu Chen

Based on requirements of pipe transport systems on deepwater pipelaying vessel, a new pipe lifting mechanism was designed. It was composed of crank-rocker and rocker-slider mechanism with good lifting capacity and high efficiency. When the slider went to the upper limit position, the mechanism could approximatively dwell, meeting the requirement for transverse conveyor operation. According to the theory of dynamics, numerical analysis method was used to the dynamic analysis of the mechanism. The results showed the maximum counterforce was at the joint between the rocker and ground, and this calculation could be a guideline for the kinematic pair structure designing.


Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


1967 ◽  
Vol 4 (04) ◽  
pp. 331-354
Author(s):  
R. L. Harrington ◽  
W. S. Vorus

A description and evaluation of the dynamic analysis method of determining the shock resistance of shipboard equipment is given. Development of equipment mathematical models is treated in detail, and the computational procedures used in conducting dynamic analyses are illustrated. Considerations in the preparation of dynamic-analysis reports are discussed. Discussers R. S. Adelizzi G. W. Bishop V. T. Boatwright K. J. Calvin C. Dotson Capt. H. C. Field, Jr., USND. W. Ginter O. Gould D. M. Gray K. Gyswyt R. T. Hawley RADM L. V. Honsinger, USN(Ret.) C. Lee J. C. Lester C. Li W. A. Littlejohn N. J. Monroe A. Morrone B. Novak E. W. Palmer C. G. Puffenburger L. L. Salter H.M. Schauer J. R. Sullivan J. D. Swannack C. Y. Tiao H. H. Ward W. P. Welch J. B. Woodward, III


Sign in / Sign up

Export Citation Format

Share Document